

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING
 (Autonomous Institution-UGC, Govt. of India)
Secunderabad-500100, Telangana State, India.

www.mrcet.ac.in

COURSE MATERIAL

II Year B. Tech II- Semester

MECHANICAL ENGINEERING

DATA STRUCTURES USING PYTHON

R20A0311

www.mrcet.ac.in

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

DEPARTMENT OF MECHANICAL ENGINEERING

CONTENTS

1. Vision, Mission & Quality Policy

2. Pos, PSOs & PEOs

3. Blooms Taxonomy

4. Course Syllabus

5. Lecture Notes (Unit wise)

a. Objectives and outcomes

b. Notes

c. Presentation Material (PPT Slides/ Videos)

d. Industry applications relevant to the concepts covered

e. Question Bank for Assignments

f. Tutorial Questions

6. Previous Question Papers

http://www.mrcet.ac.in/

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

VISION

❖ To establish a pedestal for the integral innovation, team spirit, originality and

competence in the students, expose them to face the global challenges and become

technology leaders of Indian vision of modern society.

MISSION

❖ To become a model institution in the fields of Engineering, Technology and

Management.

❖ To impart holistic education to the students to render them as industry ready

engineers.

❖ To ensure synchronization of MRCET ideologies with challenging demands of

International Pioneering Organizations.

QUALITY POLICY

❖ To implement best practices in Teaching and Learning process for both UG and PG

courses meticulously.

❖ To provide state of art infrastructure and expertise to impart quality education.

❖ To groom the students to become intellectually creative and professionally

competitive.

❖ To channelize the activities and tune them in heights of commitment and sincerity,

the requisites to claim the never - ending ladder of SUCCESS year after year.

For more information: www.mrcet.ac.in

http://www.mrcet.ac.in/

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in
Department of Mechanical Engineering

VISION

To become an innovative knowledge center in mechanical engineering through state-of-

the-art teaching-learning and research practices, promoting creative thinking

professionals.

MISSION

The Department of Mechanical Engineering is dedicated for transforming the students

into highly competent Mechanical engineers to meet the needs of the industry, in a

changing and challenging technical environment, by strongly focusing in the

fundamentals of engineering sciences for achieving excellent results in their professional

pursuits.

Quality Policy

 To pursuit global Standards of excellence in all our endeavors namely teaching,

research and continuing education and to remain accountable in our core and

support functions, through processes of self-evaluation and continuous

improvement.

 To create a midst of excellence for imparting state of art education, industry-

oriented training research in the field of technical education.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in
Department of Mechanical Engineering

PROGRAM OUTCOMES

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and teamwork: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in
Department of Mechanical Engineering

12. Life-long learning: Recognize the need for and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1 Ability to analyze, design and develop Mechanical systems to solve the

Engineering problems by integrating thermal, design and manufacturing Domains.

PSO2 Ability to succeed in competitive examinations or to pursue higher studies or

research.

PSO3 Ability to apply the learned Mechanical Engineering knowledge for the

Development of society and self.

Program Educational Objectives (PEOs)

The Program Educational Objectives of the program offered by the department are broadly

listed below:

PEO1: PREPARATION

To provide sound foundation in mathematical, scientific and engineering fundamentals

necessary to analyze, formulate and solve engineering problems.

PEO2: CORE COMPETANCE

To provide thorough knowledge in Mechanical Engineering subjects including theoretical

knowledge and practical training for preparing physical models pertaining to Thermodynamics,

Hydraulics, Heat and Mass Transfer, Dynamics of Machinery, Jet Propulsion, Automobile

Engineering, Element Analysis, Production Technology, Mechatronics etc.

PEO3: INVENTION, INNOVATION AND CREATIVITY

To make the students to design, experiment, analyze, interpret in the core field with the help of

other inter disciplinary concepts wherever applicable.

PEO4: CAREER DEVELOPMENT

To inculcate the habit of lifelong learning for career development through successful completion

of advanced degrees, professional development courses, industrial training etc.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in
Department of Mechanical Engineering

PEO5: PROFESSIONALISM

To impart technical knowledge, ethical values for professional development of the student to

solve complex problems and to work in multi-disciplinary ambience, whose solutions lead to

significant societal benefits.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in
Department of Mechanical Engineering

Blooms Taxonomy

Bloom’s Taxonomy is a classification of the different objectives and skills that educators set for

their students (learning objectives). The terminology has been updated to include the following

six levels of learning. These 6 levels can be used to structure the learning objectives, lessons,

and assessments of a course.

1. Remembering: Retrieving, recognizing, and recalling relevant knowledge from long‐ term

memory.

2. Understanding: Constructing meaning from oral, written, and graphic messages through

interpreting, exemplifying, classifying, summarizing, inferring, comparing, and explaining.

3. Applying: Carrying out or using a procedure for executing or implementing.

4. Analyzing: Breaking material into constituent parts, determining how the parts relate to

one another and to an overall structure or purpose through differentiating, organizing, and

attributing.

5. Evaluating: Making judgments based on criteria and standard through checking and

critiquing.

6. Creating: Putting elements together to form a coherent or functional whole; reorganizing

elements into a new pattern or structure through generating, planning, or producing.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in
Department of Mechanical Engineering

B. Tech (ME) R-20

Malla Reddy College of Engineering and Technology (MRCET)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
II Year B.Tech. ME- II Sem L/T/P/C

2/1/-/3

(R20A0311) DATA STRUCTURES USING PYTHON
COURSE OBJECTIVES:
This course will enable students to

1. Implement Object Oriented Programming concepts in Python.
2. Understand Lists, Dictionaries and Regular expressions in Python.
3. Understanding how searching and sorting is performed in Python.
4. Understanding how linear and non-linear data structures works.
5. To learn the fundamentals of writing Python scripts.

UNIT I
Oops Concepts- class, object, constructors, types of variables, types of methods. Inheritance:
single, multiple, multi-level, hierarchical, hybrid, Polymorphism: with functions and objects,
with class methods, with inheritance,Abstraction: abstract classes.

UNIT II
Data Structures – Definition,Linear Data Structures,Non-Linear Data Structures
Python Specific Data Structures: List,Tuples, Set, Dictionaries, Comprehensions and its
Types,Strings,slicing.

UNIT III
Arrays - Overview, Types of Arrays, Operations on Arrays, Arrays vs List.
Searching -Linear Search and Binary Search.
Sorting - Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort.

UNIT IV
Linked Lists – Implementation of Singly Linked Lists, Doubly Linked Lists.
Stacks - Overview of Stack, Implementation of Stack (List & Linked list).
Queues:Overview of Queue, Implementation of Queue(List & Linked list).

UNIT V

Graphs -Introduction, Directed vs Undirected Graphs, Weighted vs Unweighted Graphs,
Representations, Breadth First Search, Depth First Search.
Trees - Overview of Trees, Tree Terminology, Binary Trees: Introduction, Implementation,
Applications. Tree Traversals, Binary Search Trees: Introduction, Implementation, AVL Trees:
Introduction, Rotations.

B. Tech (ME) R-20

Malla Reddy College of Engineering and Technology (MRCET)

TEXT BOOKS
 1. Data structures and algorithms in python by Michael T. Goodrich

2. Data Structures and Algorithmic Thinking with Python by NarasimhaKarumanchi
REFERENCE BOOKS:

1. Hands-On Data Structures and Algorithms with Python: Write complex and powerful

code using the latest features of Python 3.7, 2nd Edition by Dr. Basant Agarwal,

Benjamin Baka.

2. Data Structures and Algorithms with Python by Kent D. Lee and Steve Hubbard.

3. Problem Solving with Algorithms and Data Structures Using Python by Bradley N Miller

and David L. Ranum.

4. Core Python Programming -Second Edition,R. Nageswara Rao, Dreamtech Press

COURSE OUTCOMES:

The students should be able to:
1. Examine Python syntax and semantics and apply Python flow control and functions.

2. Create, run and manipulate Python Programs using core data structures like Lists,

3. Apply Dictionaries and use Regular Expressions.

4. Interpret the concepts of Object-Oriented Programming as used in Python.

5. Master object-oriented programming to create an entire python project using objects

and classes

UNIT 1

Oops Concepts

UNIT-I
Syllabus:

Oops Concepts- class, object, constructors, types of variables, types of methods.

Inheritance: single, multiple, multi-level, hierarchical, hybrid, Polymorphism: with

functions and objects, with class methods, with inheritance,Abstraction: abstract classes.

Data Structure

Introduction

 Data Structure can be defined as the group of data elements which provides an

efficient way of storing and organising data in the computer so that it can be used

efficiently.

 Some examples of Data Structures are arrays, Linked List, Stack, Queue, etc.

 Data Structures are widely used in almost every aspect of Computer Science i.e.

Operating System, Compiler Design, Artifical intelligence, Graphics and many more.

 Data Structures are the main part of many computer science algorithms as they enable

the programmers to handle the data in an efficient way.

 It plays a vital role in enhancing the performance of a software or a program as the

main function of the software is to store and retrieve the user's data as fast as possible.

Need of Data Structures

As applications are getting complexed and amount of data is increasing day by day, there

may arrise the following problems:

Processor speed: To handle very large amout of data, high speed processing is required, but

as the data is growing day by day to the billions of files per entity, processor may fail to deal

with that much amount of data.

Data Search: Consider an inventory size of 106 items in a store, If our application needs to

search for a particular item, it needs to traverse 106 items every time, results in slowing

down the search process.

Multiple requests: If thousands of users are searching the data simultaneously on a web

server, then there are the chances that a very large server can be failed during that process.

In order to solve the above problems, data structures are used. Data is organized to form a

data structure in such a way that all items are not required to be searched and required data

can be searched instantly.

Data Structure Classification

 Introduction

The term “Object-Oriented Programming” (OOP) was coined by Alan Kay around 1966

while he was at grad school. The language called Simula was the first programming

language with the features of Object-oriented programming. It was developed in 1967 for

making simulation programs, in which the most important information was called objects.

Though OOPs were in the market since the early 1960s it was in the 1990s that OOPs began

to grow because of C++. After that, this technique of programming has been adapted by

various programming languages including Python. Today its application is in almost every

field such as Real-time systems, Artificial intelligence, and expert systems, Client-server

systems, Object-oriented databases, and many more.

https://en.wikipedia.org/wiki/Computer_simulation

What Is Object-Oriented Programming

 Object-Oriented Programming(OOP), is all about creating “objects”.

 An object is a group of interrelated variables(properties) and functions.

 These variables are often referred to as properties of the object and functions are

referred to as the behavior of the objects.

 These objects provide a better and clear structure for the program.

 For example: A car can be an object. If we consider the car as an object then its

properties would be – its color, its model, its price, its brand, etc. And its

behavior/function would be acceleration, slowing down, gear change.

 Object-Oriented programming is famous because it implements the real-world entities

like objects, hiding, inheritance, etc in programming.

 It makes visualization easier because it is close to real-world scenarios.

Difference Between OOP and POP

Procedure-oriented Object-oriented

It is often known as POP (procedure-

oriented programming).

It is often known as OOP (object-

oriented programming).

It follows the top-bottom flow of

execution.

It follows the bottom-top flow of

execution.

Larger programs have divided into

smaller modules called as functions.

The larger program has divided into

objects.

The main focus is on solving the

problem.

The main focus is on data security.

It doesn‟t support data abstraction. It supports data abstraction using

access specifiers that are public,

protected, and private.

It doesn‟t support inheritance. It supports the inheritance of four

Procedure-oriented Object-oriented

types.

Overloading is not supported. It supports the overloading of

function and also the operator.

There is no concept of friend function

and virtual functions.

It has the concept of friend function

and virtual functions.

Examples - C, FORTRAN Examples - C++ , Java , VB.net,

C#.net, Python, R Programming, etc.

OOP Concepts:

1.Class

2.Object

3.Encapsulation

4.Data Abstraction

5.Inheritance

6.Polymorthism

7.Data Binding

8.Message Passing

Class

 A class is a collection of objects.

 (or)

 Class is a blue print from which specific objects are created.

 Unlike the primitive data structures, classes are data structures that the user defines.

They make the code more manageable.

Declaration of Class:

class class_name:

 Statement-1

 Statement-2

 Statement-n

Example:

 class Car:

 pass

Note:

 We define a class with a keyword “class” following the class_name and colon.

 And we consider everything you write under this after using indentation as its body.

Objects and object instantiation

When we define a class only the description or a blueprint of the object is created. There is

no memory allocation until we create its object. The objector instance contains real data or

information.

Instantiation is nothing but creating a new object/instance of a class. Let‟s create the object

of the above class we defined-

obj1 = Car()

And it‟s done! Note that you can change the object name according to your choice.

Try printing this object-

print(obj1)

Since our class was empty, it returns the address where the object is stored i.e

0x7fc5e677b6d8

You also need to understand the class conductor before moving forward.

Constructors

Def:A constructor is a special type of method (function) which is used to initialize the

instance members of the class.

 In C++ or Java, the constructor has the same name as its class, but it treats constructor

differently in Python.

 It is used to create an object.

Constructors can be of two types.

1. Parameterized Constructor

2. Non-parameterized Constructor

Creating the Constructor in Python

 In Python, the method the __init__() simulates the constructor of the class.

 This method is called when the class is instantiated.

 It accepts the self-keyword as a first argument which allows accessing the attributes or

method of the class.

 We can pass any number of arguments at the time of creating the class object,

depending upon the __init__() definition.

 It is mostly used to initialize the class attributes.

 Every class must have a constructor, even if it simply relies on the default constructor.

Consider the following example to initialize the Employee class attributes.

Example

class Employee:

 def __init__(self, name, id):

 self.id = id

 self.name = name

 def display(self):

 print("ID: %d \nName: %s" % (self.id, self.name))

emp1 = Employee("John", 101)

emp2 = Employee("David", 102)

accessing display() method to print employee 1 information

emp1.display()

accessing display() method to print employee 2 information

emp2.display()

Output:

ID: 101

Name: John

ID: 102

Name: David

Python Non-Parameterized Constructor

 The non-parameterized constructor uses when we do not want to manipulate the value

or the constructor that has only self as an argument.

Consider the following example.

Example

class Student:

 # Constructor - non parameterized

 def __init__(self):

 print("This is non parametrized constructor")

 def show(self,name):

 print("Hello",name)

student = Student()

student.show("John")

Python Parameterized Constructor

 The parameterized constructor has multiple parameters along with the self.

Consider the following example.

Example

class Student:

 # Constructor - parameterized

 def __init__(self, name):

 print("This is parametrized constructor")

 self.name = name

 def show(self):

 print("Hello",self.name)

student = Student("John")

student.show()

Output:

This is parametrized constructor

Hello John

Python Default Constructor

 When we do not include the constructor in the class or forget to declare it, then that

becomes the default constructor.

 It does not perform any task but initializes the objects.

Consider the following example.

Example

class Student:

 roll_num = 101

 name = "Joseph"

 def display(self):

 print(self.roll_num,self.name)

st = Student()

st.display()

Output:

101 Joseph

3. Class methods

 Methods are the functions that we use to describe the behavior of the objects.

 They are also defined inside a class.

Look at the following code-

class Car:

 car_type = "Sedan"

 def __init__(self, name, mileage):

 self.name = name

 self.mileage = mileage

 def description(self):

 return f"The {self.name} car gives the mileage of {self.mileage}km/l"

 def max_speed(self, speed):

 return f"The {self.name} runs at the maximum speed of {speed}km/hr"

The methods defined inside a class other than the constructor method are known as

the instance methods. Furthermore, we have two instance methods here- description()

and max_speed(). Let‟s talk about them individually-

 description()- This method is returning a string with the description of the car such as the

name and its mileage. This method has no additional parameter. This method is using the

instance attributes.

 max_speed()- This method has one additional parameter and returning a string

displaying the car name and its speed.

Notice that the additional parameter speed is not using the “self” keyword. Since speed is not

an instance variable, we don‟t use the self keyword as its prefix. Let‟s create an object for

the class described above.

obj2 = Car("Honda City",24.1)

print(obj2.description())

print(obj2.max_speed(150))

 What we did is we created an object of class car and passed the required arguments. In

order to access the instance methods we use object_name.method_name().

 The method description() didn‟t have any additional parameter so we did not pass any

argument while calling it.

 The method max_speed() has one additional parameter so we passed one argument

while calling it.

Note: Three important things to remember are-

1. We can create any number of objects of a class.

2. If the method requires n parameters and we do not pass the same number of arguments

then an error will occur.

3. Order of the arguments matters.

Let‟s look at this one by one-

Creating more than one object of a class

class Car:

 def __init__(self, name, mileage):

 self.name = name

 self.mileage = mileage

 def max_speed(self, speed):

 return f"The {self.name} runs at the maximum speed of {speed}km/hr"

Honda = Car("Honda City",21.4)

print(Honda.max_speed(150))

Skoda = Car("Skoda Octavia",13)

print(Skoda.max_speed(210))

1.Passing the wrong number of arguments.

class Car:

def __init__(self, name, mileage):

self.name = name

 self.mileage = mileage

Honda = Car("Honda City")

print(Honda)

Since we did not provide the second argument, we got this error.

Order of the arguments

class Car:

 def __init__(self, name, mileage):

 self.name = name

 self.mileage = mileage

 def description(self):

 return f"The {self.name} car gives the mileage of {self.mileage}km/l"

Honda = Car(24.1,"Honda City")

print(Honda.description())

Different types of methods that can be defined in a Python
class

In a Python class, we can define three types of methods:

1. Instance methods

2. Class methods

3. Static methods

1.Instance methods

 Instance methods are the most used methods in a Python class.

 These methods are only accessible through class objects.

 If we want to modify any class variable, this should be done inside an instance

method.

 The first parameter in these methods is self. self is used to refer to the current class

object‟s properties and attributes.

 Example:

class Cricket:

 teamName = None

 def setTeamName(self, name):

 self.teamName = name

 def getTeamName(self):

 return self.teamName

c = Cricket()

c.setTeamName('India')

print(c.getTeamName())

Explanation

 In line 1, we define our class.

 In line 2, we define a class variable and set it to None.

 In lines 4 and 7, we create two instance

methods: setTeamName() and getTeamName().

 In lines 11 and 12, we use the class object to access the instance methods.

2.Class methods

 Class methods are usually used to access class variables.

 We can call these methods directly using the class name instead of creating an object

of that class.

 To declare a class method, we need to use the @classmethod decorator.

 Also, as in the case of instance methods, self is the keyword used to access the class

variables. In class methods, we use use the cls variable to refer to the class.

class Cricket:

 teamName = 'India'

 @classmethod

 def getTeamName(cls):

 return cls.teamName

print(Cricket.getTeamName())

Explanation

 In line 1, we create our class Cricket.

 In line 2, we define a class variable.

 In line 4, we use the decorator @classmethod to specify the below method as a class

method.

 In line 5, we define our class method. (Note that we have used cls to access the class

variable. You can give any name for this parameter, but as per the convention, the

name of this parameter should be cls.

 In line 8, we call our class method by using the class name instead of creating an

object of the class.

3.Static methods

 Static methods are usually used as a utility function or when we do not want an

inherited class to modify a function definition.

 These methods do not have any relation to the class variables and instance variables;

so, are not allowed to modify the class attributes inside a static method.

 To declare a static method, we need to use the @staticmethod. Again, we will be

using the cls variable to refer to the class. These methods can be accessed using the

class name as well as class objects.

Example:

class Cricket:

 teamName = 'India'

 @staticmethod

 def utility():

 print("This is a static method.")

c1 = Cricket()

c1.utility()

Cricket.utility()

Explanation

 The code is almost the same, but with a difference in line 4, where we used the

decorator @staticmethod to specify the below method as a static method.

 Then, in line 9, we call our static method by using the class object and, in line 11, we

call the static method using the class name.

Variables and Types

 Variables are nothing but reserved memory locations to store values.

 This means that when you create a variable you reserve some space in memory.

 Based on the data type of a variable, the interpreter allocates memory and decides

what can be stored in the reserved memory. Therefore, by assigning different data

types to variables, you can store integers, decimals or characters in these variables.

Assigning Values to Variables

 Python variables do not need explicit declaration to reserve memory space.

 The declaration happens automatically when you assign a value to a variable. The

equal sign (=) is used to assign values to variables.

 The operand to the left of the = operator is the name of the variable and the operand

to the right of the = operator is the value stored in the variable.

For example:

#!/usr/bin/python

counter = 100 # An integer assignment

miles = 1000.0 # A floating point

name = "John" # A string

print counter

print miles

print name

Here, 100, 1000.0 and "John" are the values assigned to counter, miles, and name variables,

respectively. This produces the following result −

100

1000.0

John

Multiple Assignment

 Python allows you to assign a single value to several variables simultaneously. For

example :a = b = c = 1

 Here, an integer object is created with the value 1, and all three variables are assigned

to the same memory location. You can also assign multiple objects to multiple

variables.

For example : a,b,c = 1,2,"john"

 Here, two integer objects with values 1 and 2 are assigned to variables a and b

respectively, and one string object with the value "john" is assigned to the variable c.

Standard Data Types

 The data stored in memory can be of many types.

 For example, a person's age is stored as a numeric value and his or her address is

stored as alphanumeric characters. Python has various standard data types that are

used to define the operations possible on them and the storage method for each of

them.

Python has five standard data types −

 Numbers

 String

 List

 Tuple

 Dictionary

Python Numbers

 Number data types store numeric values. Number objects are created when you assign

a value to them.

For example −

var1 = 1

var2 = 10

 You can also delete the reference to a number object by using the del statement. The

syntax of the del statement is −

 el var1[,var2[,var3[....,varN]]]]

 You can delete a single object or multiple objects by using the del statement. For

example : del var

 del var_a, var_b

Python supports four different numerical types −

 int (signed integers)

 long (long integers, they can also be represented in octal and hexadecimal)

 float (floating point real values)

 complex (complex numbers)

Examples

Here are some examples of numbers −

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

 Python allows you to use a lowercase l with long, but it is recommended that you use

only an uppercase L to avoid confusion with the number 1. Python displays long

integers with an uppercase L.

 A complex number consists of an ordered pair of real floating-point numbers denoted

by x + yj, where x and y are the real numbers and j is the imaginary unit.

Python Strings

 Strings in Python are identified as a contiguous set of characters represented in the

quotation marks. Python allows for either pairs of single or double quotes.

 Subsets of strings can be taken using the slice operator ([] and [:]) with indexes

starting at 0 in the beginning of the string and working their way from -1 at the end.

 The plus (+) sign is the string concatenation operator and the asterisk (*) is the

repetition operator. For example −

#!/usr/bin/python

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

This will produce the following result −

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

Python Lists

 Lists are the most versatile of Python's compound data types.

 A list contains items separated by commas and enclosed within square brackets ([]).

To some extent, lists are similar to arrays in C.

 The values stored in a list can be accessed using the slice operator ([] and [:]) with

indexes starting at 0 in the beginning of the list and working their way to end -1.

 The plus (+) sign is the list concatenation operator, and the asterisk (*) is the

repetition operator.

Example −

#!/usr/bin/python

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times

print list + tinylist # Prints concatenated lists

This produce the following result −

['abcd', 786, 2.23, 'john', 70.2]

abcd

[786, 2.23]

[2.23, 'john', 70.2]

[123, 'john', 123, 'john']

['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

Python Tuples

 A tuple is another sequence data type that is similar to the list.

 A tuple consists of a number of values separated by commas.

 Unlike lists, tuples are enclosed within parentheses.

The main differences between lists and tuples are:

 Lists are enclosed in brackets ([]) and their elements and size can be changed, while

tuples are enclosed in parentheses (()) and cannot be updated.

 Tuples can be thought of as read-only lists.

For example −

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print tuple # Prints the complete tuple

print tuple[0] # Prints first element of the tuple

print tuple[1:3] # Prints elements of the tuple starting from 2nd till 3rd

print tuple[2:] # Prints elements of the tuple starting from 3rd element

print tinytuple * 2 # Prints the contents of the tuple twice

print tuple + tinytuple # Prints concatenated tuples

This produce the following result −

('abcd', 786, 2.23, 'john', 70.2)

abcd

(786, 2.23)

(2.23, 'john', 70.2)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.2, 123, 'john')

The following code is invalid with tuple, because we attempted to update a tuple, which is

not allowed. Similar case is possible with lists −

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

list = ['abcd', 786 , 2.23, 'john', 70.2]

tuple[2] = 1000 # Invalid syntax with tuple

list[2] = 1000 # Valid syntax with list

Python Dictionary

 A dictionary key can be almost any Python type, but are usually numbers or strings.

Values, on the other hand, can be any arbitrary Python object.

 Dictionaries are enclosed by curly braces ({ }) and values can be assigned and

accessed using square braces ([]).

For example −

#!/usr/bin/python

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print dict['one'] # Prints value for 'one' key

print dict[2] # Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys() # Prints all the keys

print tinydict.values() # Prints all the values

This produce the following result −

This is one

This is two

{'dept': 'sales', 'code': 6734, 'name': 'john'}

['dept', 'code', 'name']

['sales', 6734, 'john']

Dictionaries have no concept of order among elements. It is incorrect to say that the

elements are "out of order"; they are simply unordered.

Data Type Conversion

 Sometimes, you may need to perform conversions between the built-in types. To

convert between types, you simply use the type name as a function.

 There are several built-in functions to perform conversion from one data type to

another. These functions return a new object representing the converted value.

Sr.No. Function & Description

1
int(x [,base])

Converts x to an integer. base specifies the base if x is a string.

2 long(x [,base])

Converts x to a long integer. base specifies the base if x is a string.

3 float(x)

Converts x to a floating-point number.

4 complex(real [,imag])

Creates a complex number.

5 str(x)

Converts object x to a string representation.

6 repr(x)

Converts object x to an expression string.

7 eval(str)

Evaluates a string and returns an object.

8 tuple(s)

Converts s to a tuple.

9 list(s)

Converts s to a list.

10 set(s)

Converts s to a set.

11 dict(d)

Creates a dictionary. d must be a sequence of (key,value) tuples.

12 frozenset(s)

Converts s to a frozen set. In Python, frozenset is the same as set except

the frozensets are immutable which means that elements from the

frozenset cannot be added or removed once created.

13 chr(x)

Converts an integer to a character.

14 unichr(x)

Converts an integer to a Unicode character.

15 ord(x)

Converts a single character to its integer value.

16 hex(x)

Converts an integer to a hexadecimal string.

17 oct(x)

Converts an integer to an octal string.

Inheritance

 Inheritance is an important aspect of the object-oriented paradigm.

 Inheritance provides code reusability to the program because we can use an existing

class to create a new class instead of creating it from scratch.

 In inheritance, the child class acquires the properties and can access all the data

members and functions defined in the parent class.

 A child class can also provide its specific implementation to the functions of the

parent class.

 In python, a derived class can inherit base class by just mentioning the base in the

bracket after the derived class name.

 Consider the following syntax to inherit a base class into the derived class.

Syntax:

 A class can inherit multiple classes by mentioning all of them inside the bracket.

Consider the following syntax.

Syntax:

There are different types of inheritance:

 1.Simple Inheritance

 2.Multi-level Inheritance

 3.Multiple Inheritance

class derived-class(base class):

 <class-suite>

class derive-class(<base class 1>, <base class 2>, <base class n>):

 <class - suite>

https://www.javatpoint.com/inheritance-in-python
https://www.javatpoint.com/inheritance-in-python
https://www.javatpoint.com/inheritance-in-python
https://www.javatpoint.com/inheritance-in-python

 4.Hierarchical Inheritance

 5.Hybrid Inheritance

1.Simple Inheritance: The process of acquiring the properties of one base class into another

single derived class is called “Simple Inheritance”.

 i.e

Example1:

 class Animal:

 def speak(self):

 print("Animal Speaking")

#child class Dog inherits the base class Animal

class Dog(Animal):

 def bark(self):

 print("dog barking")

d = Dog()

d.bark()

d.speak()

Output:

dog barking

Animal Speaking

2.Multi-Level inheritance

Multi-Level inheritance is possible in python like other object-oriented languages. Multi-

level inheritance is archived when a derived class inherits another derived class. There is no

limit on the number of levels up to which, the multi-level inheritance is archived in python.

https://www.javatpoint.com/inheritance-in-python
https://www.javatpoint.com/inheritance-in-python

The syntax of multi-level inheritance is given below.

Syntax:

class class1:

 <class-suite>

class class2(class1):

 <class suite>

class class3(class2):

 <class suite>

.

.

Example

class Animal:

 def speak(self):

 print("Animal Speaking")

#The child class Dog inherits the base class Animal

class Dog(Animal):

 def bark(self):

 print("dog barking")

#The child class Dogchild inherits another child class Dog

https://www.javatpoint.com/inheritance-in-python
https://www.javatpoint.com/inheritance-in-python
https://www.javatpoint.com/inheritance-in-python
https://www.javatpoint.com/inheritance-in-python

class DogChild(Dog):

 def eat(self):

 print("Eating bread...")

d = DogChild()

d.bark()

d.speak()

d.eat()

Output:

dog barking

Animal Speaking

Eating bread...

3.Multiple inheritance

Python provides us the flexibility to inherit multiple base classes in the child class.

The syntax to perform multiple inheritance is given below.

Syntax

 class Base1:

 <class-suite>

class Base2:

 <class-suite>

.

.

.

https://www.javatpoint.com/inheritance-in-python
https://www.javatpoint.com/inheritance-in-python

class BaseN:

 <class-suite>

class Derived(Base1, Base2, BaseN):

 <class-suite>

Example

 class Calculation1:

 def Summation(self,a,b):

 return a+b;

class Calculation2:

 def Multiplication(self,a,b):

 return a*b;

class Derived(Calculation1,Calculation2):

 def Divide(self,a,b):

 return a/b;

d = Derived()

print(d.Summation(10,20))

print(d.Multiplication(10,20))

print(d.Divide(10,20))

Output:

30

200

0.5

4.Hierarchical Inheritance

Def: The Procee of deriving multiple classes from a single base class is called “Hierarchical

Inheritance”.

i.e

https://www.javatpoint.com/inheritance-in-python
https://www.javatpoint.com/inheritance-in-python

Example:

 #Hierarchical Inheritance

class A:

 a=None;

class B(A):

 b=None;

 def __init__(self):

 self.a=10;

 self.b=20;

 def display_ab(self):

 print("The Variables in Class B is a={0} \t b={1}".format(self.a,self.b))

class C(A):

 c=None;

 def __init__(self):

 self.a=30;

 self.c=40;

 def display_ac(self):

 print("The Variables in Class C is a={0} \t c={1}".format(self.a,self.c))

class D(A):

 d=None;

 def __init__(self):

 self.a=50;

 self.d=60;

 def display_ad(self):

 print("The Variables in Class D is a={0} \t d={1}".format(self.a,self.d))

b1=B()

b1.display_ab();

c1=C()

c1.display_ac()

d1=D()

d1.display_ad()

Output:

The Variables in Class B is a=10 b=20

The Variables in Class C is a=30 c=40

The Variables in Class D is a=50 d=60

5.Hybrid Inheritance

Def: The combination of any 2 types of inheritance like Multiple,Hierarchical and

Hierarchical,Multilevel Inheritance.

i.e

Example:Write a Python Program to describe Hybrid Inheritance for above diagram.

Code:

class A:

 a=10;

class B(A):

 b=20;

 def display_ab(self):

 print("a=",self.a)

 print("b=",self.b)

class C(A):

 c=30;

class D(C):

 d=40;

 def display_acd(self):

 print("a=",self.a)

 print("c=",self.c)

 print("d=",self.d)

obj_b=B()

print("Class B Details are:")

Class A

Class B Class C

Class D

obj_b.display_ab();

obj_d=D()

print("Class D Details are:")

obj_d.display_acd();

Output:

Class B Details are:

a= 10

b= 20

Class D Details are:

a= 10

c= 30

d= 40

Polymorphism in Python

Polymorphism: The word polymorphism means having many forms. In programming,

polymorphism means the same function name (but different signatures) being used for

different types.

Example of inbuilt polymorphic functions :

 # Python program to demonstrate in-built poly-morphic functions

len() being used for a string

 print(len("geeks"))

len() being used for a list

 print(len([10, 20, 30]))

Output:

5

3

Examples of user-defined polymorphic functions :

 # A simple Python function to demonstrate Polymorphism

def add(x, y, z = 0):

 return x + y+z

Driver code

print(add(2, 3))

print(add(2, 3, 4))

Output:

5

9

Polymorphism with class methods:

The below code shows how Python can use two different class types, in the same way. We

create a for loop that iterates through a tuple of objects. Then call the methods without

being concerned about which class type each object is. We assume that these methods

actually exist in each class.

class India():

 def capital(self):

 print("New Delhi is the capital of India.")

 def language(self):

 print("Hindi is the most widely spoken language of India.")

 def type(self):

 print("India is a developing country.")

class USA():

 def capital(self):

 print("Washington, D.C. is the capital of USA.")

 def language(self):

 print("English is the primary language of USA.")

 def type(self):

 print("USA is a developed country.")

 obj_ind = India()

obj_usa = USA()

for country in (obj_ind, obj_usa):

 country.capital()

 country.language()

 country.type()

Output:

New Delhi is the capital of India.

Hindi is the most widely spoken language of India.

India is a developing country.

Washington, D.C. is the capital of USA.

English is the primary language of USA.

USA is a developed country.

Polymorphism with Inheritance:

 In Python, Polymorphism lets us define methods in the child class that have the same

name as the methods in the parent class.

 In inheritance, the child class inherits the methods from the parent class.

 However, it is possible to modify a method in a child class that it has inherited from

the parent class.

 This is particularly useful in cases where the method inherited from the parent class

doesn‟t quite fit the child class.

 In such cases, we re-implement the method in the child class. This process of re-

implementing a method in the child class is known as Method Overriding.

class Bird:

 def intro(self):

 print("There are many types of birds.")

 def flight(self):

 print("Most of the birds can fly but some cannot.")

class sparrow(Bird):

 def flight(self):

 print("Sparrows can fly.")

class ostrich(Bird):

 def flight(self):

 print("Ostriches cannot fly.")

obj_bird = Bird()

obj_spr = sparrow()

obj_ost = ostrich()

obj_bird.intro()

obj_bird.flight()

obj_spr.intro()

obj_spr.flight()

obj_ost.intro()

obj_ost.flight()

Output:

There are many types of birds.

Most of the birds can fly but some cannot.

There are many types of birds.

Sparrows can fly.

There are many types of birds.

Ostriches cannot fly.

Polymorphism with a Function and objects:

 It is also possible to create a function that can take any object, allowing for

polymorphism. In this example, let‟s create a function called “func()” which will

take an object which we will name “obj”.

 Though we are using the name „obj‟, any instantiated object will be able to be called

into this function.

 Next, let‟s give the function something to do that uses the „obj‟ object we passed to

it. In this case, let‟s call the three methods, viz., capital(), language() and type(),

each of which is defined in the two classes „India‟ and „USA‟. Next, let‟s create

instantiations of both the „India‟ and „USA‟ classes if we don‟t have them already.

 With those, we can call their action using the same func() function:

Example:

def func(obj):

 obj.capital()

 obj.language()

 obj.type()

obj_ind = India()

obj_usa = USA()

func(obj_ind)

func(obj_usa)

Code: Implementing Polymorphism with a Function

class India():

 def capital(self):

 print("New Delhi is the capital of India.")

 def language(self):

 print("Hindi is the most widely spoken language of India.")

 def type(self):

 print("India is a developing country.")

class USA():

 def capital(self):

 print("Washington, D.C. is the capital of USA.")

 def language(self):

 print("English is the primary language of USA.")

 def type(self):

 print("USA is a developed country.")

def func(obj):

 obj.capital()

 obj.language()

 obj.type()

obj_ind = India()

obj_usa = USA()

func(obj_ind)

func(obj_usa)

Output:

New Delhi is the capital of India.

Hindi is the most widely spoken language of India.

India is a developing country.

Washington, D.C. is the capital of USA.

English is the primary language of USA.

USA is a developed country.

Abstraction in Python

Abstraction is used to hide the internal functionality of the function from the users. The users

only interact with the basic implementation of the function, but inner working is hidden.

User is familiar with that "what function does" but they don't know "how it does."

Example:

 In simple words, we all use the smartphone and very much familiar with its functions

such as camera, voice-recorder, call-dialing, etc., but we don't know how these

operations are happening in the background.

 Let's take another example - When we use the TV remote to increase the volume. We

don't know how pressing a key increases the volume of the TV. We only know to

press the "+" button to increase the volume.

 That is exactly the abstraction that works in the object-oriented concept

Why Abstraction is Important

 In Python, an abstraction is used to hide the irrelevant data/class in order to reduce the

complexity.

 It also enhances the application efficiency. Next, we will learn how we can achieve

abstraction using the Python program

Abstraction classes in Python

 In Python, abstraction can be achieved by using abstract classes and interfaces.

 A class that consists of one or more abstract method is called the abstract class.

 Abstract methods do not contain their implementation.

 Abstract class can be inherited by the subclass and abstract method gets its definition

in the subclass.

 Abstraction classes are meant to be the blueprint of the other class. An abstract class

can be useful when we are designing large functions. An abstract class is also helpful

to provide the standard interface for different implementations of components.

 Python provides the abc module to use the abstraction in the Python program.

Let's see the following syntax.

Syntax

from abc import ABC

class ClassName(ABC):

We import the ABC class from the abc module.

Abstract Base Classes

An abstract base class is the common application program of the interface for a set of

subclasses. It can be used by the third-party, which will provide the implementations such as

with plugins. It is also beneficial when we work with the large code-base hard to remember

all the classes.

Working of the Abstract Classes

 Unlike the other high-level language, Python doesn't provide the abstract class itself.

https://www.javatpoint.com/python-oops-concepts
https://www.javatpoint.com/python-oops-concepts
https://www.javatpoint.com/python-programs
https://www.javatpoint.com/python-tutorial

 We need to import the abc module, which provides the base for defining Abstract

Base classes (ABC). The ABC works by decorating methods of the base class as

abstract.

 It registers concrete classes as the implementation of the abstract base. We use

the @abstractmethod decorator to define an abstract method or if we don't provide the

definition to the method, it automatically becomes the abstract method.

 Let's understand the following example.

Example -

Python program demonstrate abstract base class work

from abc import ABC

class Car(ABC):

 # abstract method

 def mileage(self):

 pass

class Tesla(Car):

 def mileage(self):

 print("The mileage is 30kmph")

class Suzuki(Car):

 def mileage(self):

 print("The mileage is 25kmph ")

class Duster(Car):

 def mileage(self):

 print("The mileage is 24kmph ")

class Renault(Car):

 def mileage(self):

 print("The mileage is 27kmph ")

Driver code

t= Tesla ()

t.mileage()

r = Renault()

r.mileage()

s = Suzuki()

s.mileage()

d = Duster()

d.mileage()

Output:

The mileage is 30kmph

The mileage is 27kmph

The mileage is 25kmph

The mileage is 24kmph

Explanation -

In the above code, we have imported the abc module to create the abstract base class. We

created the Car class that inherited the ABC class and defined an abstract method named

mileage(). We have then inherited the base class from the three different subclasses and

implemented the abstract method differently. We created the objects to call the abstract

method.

Let's understand another example.

Let's understand another example.

Example -

Python program to define abstract class

from abc import ABC

class Polygon(ABC):

 # abstract method

 def sides(self):

 pass

class Triangle(Polygon):

 def sides(self):

 print("Triangle has 3 sides")

class Pentagon(Polygon):

 def sides(self):

 print("Pentagon has 5 sides")

class Hexagon(Polygon):

 def sides(self):

 print("Hexagon has 6 sides")

class square(Polygon):

 def sides(self):

 print("I have 4 sides")

Driver code

t = Triangle()

t.sides()

s = square()

s.sides()

p = Pentagon()

p.sides()

k = Hexagon()

K.sides()

Output:

Triangle has 3 sides

Square has 4 sides

Pentagon has 5 sides`

Hexagon has 6 sides

Explanation -

In the above code, we have defined the abstract base class named Polygon and we also

defined the abstract method. This base class inherited by the various subclasses. We

implemented the abstract method in each subclass. We created the object of the subclasses

and invoke the sides() method. The hidden implementations for the sides() method inside the

each subclass comes into play. The abstract method sides() method, defined in the abstract

class, is never invoked.

Points to Remember

Below are the points which we should remember about the abstract base class in Python.

o An Abstract class can contain the both method normal and abstract method.

o An Abstract cannot be instantiated; we cannot create objects for the abstract class.

o Abstraction is essential to hide the core functionality from the users.

UNIT 2

Data Structures

UNIT II
Data Structures – Definition,Linear Data Structures,Non-Linear Data

Structures,Python Specific Data Structures, List,Tuples, Set, Dictionaries,

Comprehensions and its Types,Strings,slicing.

Data Structures

 Python has been used worldwide for different fields such as

making websites, artificial intelligence and much more.

 But to make all of this possible, data plays a very important role which means

that this data should be stored efficiently and the access to it must be timely.

 So how do We achieve this? We use something called Data Structures.

What is a Data Structure

 Organizing, managing and storing data is important as it enables easier access

and efficient modifications. Data Structures allows you to organize your data in such a

way that enables us to store collections of data, relate them and perform operations on

them accordingly.

Definition: Data structures are ―containers‖ that organize and group data according to

type.

Types of Data Structures in Python

 Python has implicit support for Data Structures which enable us to store and

access data. These structures are called List, Dictionary, Tuple and Set.

https://www.edureka.co/blog/django-tutorial/
https://www.edureka.co/blog/pros-and-cons-of-ai/
https://www.edureka.co/blog/lists-in-python/
https://www.edureka.co/blog/dictionary-in-python/
https://www.edureka.co/blog/tuple-in-python/
https://www.edureka.co/blog/sets-in-python/

Linear Data Structures

Def:The data structure where data items are organized sequentially or linearly is called

a linear data structure.

 In the linear data structure, data items are organized linearly, one after another

and only one data item can be reached.

Example of linear data structures:

 Array: series of a collection of elements(array elements) all of which are the

same type, and has fixed size.

 Linked List: data structure consisting of a collection of nodes that represent a

sequence. Linked lists are useful for dynamic memory allocation.

 Queue: data structure where one end is used to insert data (enqueue) and the

other end is used to remove data (dequeue). Queue order is FIFO(First In First

Out).

 Stack: a data structure that follows a particular order for performing operations.

The order is LIFO(Last In First Out) and it is a dynamic and constantly

changing object.

Non-linear Data Structures

Def:Opposite of linear data structure, is a non-linear data structure,i.e data items are

not arranged in a sequential structure and are connected to several other data items to

represent a specific relationship.

Example of non-linear data structures:

 Tree: a data structure that may have multiple relations among its nodes that

simulates a hierarchical tree structure.

 Heap: sometimes called as the binary heap is a binary tree data structure that

satisfies the heap property.

 Hash Table: or hash map is a data structure that map keys to values and using a

hash function it computes an index from which value can be found.

 Graph: set of items connected by edges.

Built-in Data Structures

 As the name suggests, these Data Structures are built-in with Python which

makes programming easier and helps programmers use them to obtain solutions faster.

Let‘s discuss each of them in detail.

Lists

 Lists are used to store data of different data types in a sequential manner.

 There are addresses assigned to every element of the list, which is called as

‗Index‘. The index value starts from 0 and goes on until the last element called

the ‗Positive index‟.

 There is also negative indexing which starts from -1 enabling you to access

elements from the last to first.

Let us now understand lists better with the help of an example program.

Creating a list

 To create a list, use the square brackets and add elements into it accordingly.

 If you do not pass any elements inside the square brackets, you get an empty list

as the output.

Example

my_list = [] #create empty list

print(my_list)

my_list = [1, 2, 3, 'example', 3.132] #creating list with data

print(my_list)

Output:

[]

[1, 2, 3, ‗example‘, 3.132]

Adding Elements

 Adding the elements in the list can be achieved using the append(), extend() and

insert() functions.

 The append() function adds all the elements passed to it as a single element.

 The extend() function adds the elements one-by-one into the list.

 The insert() function adds the element passed to the index value and increase the

size of the list too.

https://www.edureka.co/blog/python-basics/
https://www.edureka.co/blog/python-basics/
https://www.edureka.co/blog/lists-in-python/

Example:

my_list = [1, 2, 3]

print(my_list)

my_list.append([555, 12]) #add as a single element

print(my_list)

my_list.extend([234, 'more_example']) #add as different elements

print(my_list)

my_list.insert(1, 'insert_example') #add element i

print(my_list)

Output:

[1, 2, 3]

[1, 2, 3, [555, 12]]

[1, 2, 3, [555, 12], 234, ‗more_example‘]

[1, ‗insert_example‘, 2, 3, [555, 12], 234, ‗more_example‘]

Deleting Elements

 To delete elements, use the del keyword which is built-in into Python but this

does not return anything back to us.

 If you want the element back, you use the pop() function which takes the index

value.

 To remove an element by its value, you use the remove() function.

 To delete all elements from the List we can use the clear() function.

Example:

my_list = [1, 2, 3, 'example', 3.132, 10, 30]

del my_list[5] #delete element at index 5

print(my_list)

my_list.remove('example') #remove element with value

print(my_list)

a = my_list.pop(1) #pop element from list

print('Popped Element: ', a, ' List remaining: ', my_list)

my_list.clear() #empty the list

print(my_list)

Output:

[1, 2, 3, ‗example‘, 3.132, 30]

[1, 2, 3, 3.132, 30]

Popped Element: 2 List remaining: [1, 3, 3.132, 30]

[]

Accessing Elements

 Accessing elements is the same as accessing Strings in Python.

 We pass the index values and hence can obtain the values as needed.

Example:

my_list = [1, 2, 3, 'example', 3.132, 10, 30]

for element in my_list: #access elements one by one

 print(element)

 print(my_list) #access all elements

print(my_list[3]) #access index 3 element

print(my_list[0:2]) #access elements from 0 to 1 and exclude 2

print(my_list[::-1]) #access elements in reverse

Output:

1

2

3

example

3.132

10

30

[1, 2, 3, ‗example‘, 3.132, 10, 30]

example

[1, 2]

[30, 10, 3.132, ‗example‘, 3, 2, 1]

Other Functions

You have several other functions that can be used when working with lists.

 The len() function returns to us the length of the list.

 The index() function finds the index value of value passed where it has been

encountered the first time.

 The count() function finds the count of the value passed to it.

 The sorted() and sort() functions do the same thing, that is to sort the values of

the list. The sorted() has a return type whereas the sort() modifies the original

list.

https://www.edureka.co/blog/what-is-string-in-python/

Example:

my_list = [1, 2, 3, 10, 30, 10]

print(len(my_list)) #find length of list

print(my_list.index(10)) #find index of element that occurs first

print(my_list.count(10)) #find count of the element

print(sorted(my_list)) #print sorted list but not change original

my_list.sort(reverse=True) #sort original list

print(my_list)

Output:

6

3

2

[1, 2, 3, 10, 10, 30]

[30, 10, 10, 3, 2, 1]

Slice Methods:

 The slice() function returns a slice object that can use used to slice strings, lists,

tuple etc.

The syntax of slice() is:

 slice(start, stop, step)

slice() Parameters

slice() can take three parameters:

start (optional) - Starting integer where the slicing of the object starts. Default to

None if not provided.

stop - Integer until which the slicing takes place. The slicing stops at index

‗stop -1‘ (last element).

step (optional) - Integer value which determines the increment between each index for

slicing. Defaults to None if not provided.

Example 1: Create a slice object for slicing

contains indices (0, 1, 2)

result1 = slice(3)

print(result1)

contains indices (1, 3)

result2 = slice(1, 5, 2)

print(slice(1, 5, 2))

Output

slice(None, 3, None)

slice(1, 5, 2)

Here, result1 and result2 are slice objects.

Example 2: Get substring using slice object

Program to get a substring from the given string

py_string = 'Python'

stop = 3

contains 0, 1 and 2 indices

slice_object = slice(3)

print(py_string[slice_object]) # Pyt

start = 1, stop = 6, step = 2

contains 1, 3 and 5 indices

slice_object = slice(1, 6, 2)

print(py_string[slice_object]) # yhn

Output

Pyt

yhn

Example 3: Get substring using negative index

py_string = 'Python'

start = -1, stop = -4, step = -1

contains indices -1, -2 and -3

slice_object = slice(-1, -4, -1)

print(py_string[slice_object]) # noh

Output

noh

Example 4: Get sublist and sub-tuple

py_list = ['P', 'y', 't', 'h', 'o', 'n']

py_tuple = ('P', 'y', 't', 'h', 'o', 'n')

contains indices 0, 1 and 2

slice_object = slice(3)

print(py_list[slice_object]) # ['P', 'y', 't']

contains indices 1 and 3

slice_object = slice(1, 5, 2)

print(py_tuple[slice_object]) # ('y', 'h')

Output

['P', 'y', 't']

('y', 'h')

Example 5: Get sublist and sub-tuple using negative index

py_list = ['P', 'y', 't', 'h', 'o', 'n']

py_tuple = ('P', 'y', 't', 'h', 'o', 'n')

contains indices -1, -2 and -3

slice_object = slice(-1, -4, -1)

print(py_list[slice_object]) # ['n', 'o', 'h']

contains indices -1 and -3

slice_object = slice(-1, -5, -2)

print(py_tuple[slice_object]) # ('n', 'h')

Output

['n', 'o', 'h']

('n', 'h')

Example 6: Using Indexing Syntax for Slicing

The slice object can be substituted with the indexing syntax in Python.

We can alternately use the following syntax for slicing:

obj[start:stop:step]

For example,

py_string = 'Python'

contains indices 0, 1 and 2

print(py_string[0:3]) # Pyt

contains indices 1 and 3

print(py_string[1:5:2]) # yh

Output

Pyt

Yh

Tuples in Python

 A Tuple is a collection of Python objects separated by commas.

 In someways a tuple is similar to a list in terms of indexing, nested objects and

repetition but a tuple is “immutable” unlike lists which are mutable.

Creating Tuples

An empty tuple

empty_tuple = (,)

print (empty_tuple)

Output:

()

Creating non-empty tuples

 # One way of creation

tup = 'python', 'geeks'

print(tup)

Another for doing the same

tup = ('python', 'geeks')

print(tup)

Output

('python', 'geeks')

('python', 'geeks')

Concatenation of Tuples

Code for concatenating 2 tuples

tuple1 = (0, 1, 2, 3)

tuple2 = ('python', 'geek')

Concatenating above two

print(tuple1 + tuple2)

Output:

(0, 1, 2, 3, 'python', 'geek')

Nesting of Tuples

Code for creating nested tuples

tuple1 = (0, 1, 2, 3)

tuple2 = ('python', 'geek')

tuple3 = (tuple1, tuple2)

print(tuple3)

Output :

((0, 1, 2, 3), ('python', 'geek'))

 Repetition in Tuples

Code to create a tuple with repetition

tuple3 = ('python',)*3

print(tuple3)

Output

 ('python', 'python', 'python')

Note:Try the above without a comma and check. We will get tuple3 as a string

‗pythonpythonpython‘.

Immutable Tuples

#code to test that tuples are immutable

tuple1 = (0, 1, 2, 3)

tuple1[0] = 4

print(tuple1)

Output

Traceback (most recent call last):

 File "e0eaddff843a8695575daec34506f126.py", line 3, in

 tuple1[0]=4

TypeError: 'tuple' object does not support item assignment

Slicing in Tuples

code to test slicing

tuple1 = (0 ,1, 2, 3)

print(tuple1[1:])

print(tuple1[::-1])

print(tuple1[2:4])

Output

(1, 2, 3)

(3, 2, 1, 0)

(2, 3)

 Deleting a Tuple

Code for deleting a tuple

tuple3 = (0, 1)

del tuple3

print(tuple3)

Error:

Traceback (most recent call last):

 File "d92694727db1dc9118a5250bf04dafbd.py", line 6, in <module>

 print(tuple3)

NameError: name 'tuple3' is not defined

Output:

(0, 1)

Finding Length of a Tuple

Code for printing the length of a tuple

tuple2 = ('python', 'geek')

print(len(tuple2))

Output

 2

Converting list to a Tuple

Code for converting a list and a string into a tuple

list1 = [0, 1, 2]

print(tuple(list1))

print(tuple('python')) # string 'python'

Output

(0, 1, 2)

('p', 'y', 't', 'h', 'o', 'n')

Sets in Python

 Sets are a collection of unordered elements that are unique.

 Meaning that even if the data is repeated more than one time, it would be

entered into the set only once.

Creating a set

Sets are created using the ―flower braces‖ but instead of adding key-value pairs, we

just pass values to it.

my_set = {1, 2, 3, 4, 5, 5, 5} #create set
print(my_set)

Output:

{1, 2, 3, 4, 5}

Adding elements

To add elements, you use the add() function and pass the value to it.

my_set = {1, 2, 3}

my_set.add(4) #add element to set

print(my_set)

Output:

{1, 2, 3, 4}

Operations in sets

The different operations on set such as union, intersection and so on are shown below.

my_set = {1, 2, 3, 4}

my_set_2 = {3, 4, 5, 6}

print(my_set.union(my_set_2), '----------', my_set | my_set_2)

print(my_set.intersection(my_set_2), '----------', my_set & my_set_2)

print(my_set.difference(my_set_2), '----------', my_set - my_set_2)

print(my_set.symmetric_difference(my_set_2), '----------', my_set ^ my_set_2)

my_set.clear()

print(my_set)

https://www.edureka.co/blog/sets-in-python/

 The union() function combines the data present in both sets.

 The intersection() function finds the data present in both sets only.

 The difference() function deletes the data present in both and outputs data

present only in the set passed.

 The symmetric_difference() does the same as the difference() function but

outputs the data which is remaining in both sets.

Output:

{1, 2, 3, 4, 5, 6} ———- {1, 2, 3, 4, 5, 6}

{3, 4} ———- {3, 4}

{1, 2} ———- {1, 2}

{1, 2, 5, 6} ———- {1, 2, 5, 6}

Dictionary

 Dictionaries are used to store key-value pairs.

 To understand better, think of a phone directory where hundreds and thousands

of names and their corresponding numbers have been added.

 Now the constant values here are Name and the Phone Numbers which are

called as the keys.

 And the various names and phone numbers are the values that have been fed to

the keys.

 If you access the values of the keys, you will obtain all the names and phone

numbers. So that is what a key-value pair is.

 And in Python, this structure is stored using Dictionaries. Let us understand this

better with an example program.

Creating a Dictionary

Dictionaries can be created using the ―flower braces‖ or using the dict() function. You

need to add the key-value pairs whenever you work with dictionaries.

my_dict = {} #empty dictionary

print(my_dict)

my_dict = {1: 'Python', 2: 'Java'} #dictionary with elements

print(my_dict)

https://www.edureka.co/blog/dictionary-in-python/

Output:

{}

{1: ‗Python‘, 2: ‗Java‘}

Changing and Adding key, value pairs

 To change the values of the dictionary, you need to do that using the keys.

 So, you firstly access the key and then change the value accordingly.

 To add values, you simply just add another key-value pair as shown below.

Output:

{‗First‘: ‗Python‘, ‗Second‘: ‗Java‘}

{‗First‘: ‗Python‘, ‗Second‘: ‗C++‘}

{‗First‘: ‗Python‘, ‗Second‘: ‗C++‘, ‗Third‘: ‗Ruby‘}

Deleting key, value pairs

 To delete the values, you use the pop() function which returns the value that has

been deleted.

 To retrieve the key-value pair, we use the popitem() function which returns a

tuple of the key and value.

 To clear the entire dictionary, we use the clear() function.

my_dict = {'First': 'Python', 'Second': 'Java'}

print(my_dict)

my_dict['Second'] = 'C++' #changing element

print(my_dict)

my_dict['Third'] = 'Ruby' #adding key-value pair

print(my_dict)

my_dict = {'First': 'Python', 'Second': 'Java', 'Third': 'Ruby'}

a = my_dict.pop('Third') #pop element

print('Value:', a)

print('Dictionary:', my_dict)

b = my_dict.popitem() #pop the key-value pair

print('Key, value pair:', b)

print('Dictionary', my_dict)

Output:

Value: Ruby

Dictionary: {‗First‘: ‗Python‘, ‗Second‘: ‗Java‘}

Key, value pair: (‗Second‘, ‗Java‘)

Dictionary {‗First‘: ‗Python‘}

{}

Accessing Elements

 We can access elements using the keys only.

 We can use either the get() function or just pass the key values and you will be

retrieving the values.

Output:

Python

Java

Other Functions

 We have different functions which return to us the keys or the values of the

key-value pair accordingly to the keys(), values(), items() functions

accordingly.

my_dict = {'First': 'Python', 'Second': 'Java'}

print(my_dict['First']) #access elements using keys

print(my_dict.get('Second'))

my_dict = {'First': 'Python', 'Second': 'Java', 'Third': 'Ruby'}

print(my_dict.keys()) #get keys

print(my_dict.values()) #get values

print(my_dict.items()) #get key-value pairs

print(my_dict.get('First'))

Output:

dict_keys([‗First‘, ‗Second‘, ‗Third‘])

dict_values([‗Python‘, ‗Java‘, ‗Ruby‘])

dict_items([(‗First‘, ‗Python‘), (‗Second‘, ‗Java‘), (‗Third‘, ‗Ruby‘)])

Python

Sequences in Python

 Sequences are the essential building block of python programming and are used

on a daily basis by python developers.

There are seven types of sequences in Python.

 Unicode string

 strings

 Lists

 Tuples

 Byte arrays

 Buffers

 Xrange objects

Out of these seven, three are the most popular. These three are: –

 Lists

 Tuples

 Strings

https://www.educba.com/tuples-in-python/

Some common operations for the sequence type object can work on both mutable

and immutable sequences. Some of the operations are as follows –

Sr.No. Operation/Functions & Description

1
x in seq

True, when x is found in the sequence seq, otherwise False

2
x not in seq

False, when x is found in the sequence seq, otherwise True

3
x + y

Concatenate two sequences x and y

4
x * n or n * x

Add sequence x with itself n times

5
seq[i]

ith item of the sequence.

6
seq[i:j]

Slice sequence from index i to j

7
seq[i:j:k]

Slice sequence from index i to j with step k

8
len(seq)

Length or number of elements in the sequence

9
min(seq)

Minimum element in the sequence

10
max(seq)

Maximum element in the sequence

11
seq.index(x[, i[, j]])

Index of the first occurrence of x (in the index range i and j)

12
seq.count(x)

Count total number of elements in the sequence

13
seq.append(x)

Add x at the end of the sequence

14
seq.clear()

Clear the contents of the sequence

15
seq.insert(i, x)

Insert x at the position i

16
seq.pop([i])

Return the item at position i, and also remove it from sequence. Default is last

element.

17
seq.remove(x)

Remove first occurrence of item x

18
seq.reverse()

Reverse the list

Example Code

myList1 = [10, 20, 30, 40, 50]

myList2 = [56, 42, 79, 42, 85, 96, 23]

if 30 in myList1:

 print('30 is present')

if 120 not in myList1:

 print('120 is not present')

print(myList1 + myList2) #Concatinate lists

print(myList1 * 3) #Add myList1 three times with itself

print(max(myList2))

print(myList2.count(42)) #42 has two times in the list

print(myList2[2:7])

print(myList2[2:7:2])

myList1.append(60)

print(myList1)

myList2.insert(5, 17)

print(myList2)

myList2.pop(3)

print(myList2)

myList1.reverse()

print(myList1)

myList1.clear()

print(myList1)

Output

30 is present

120 is not present

[10, 20, 30, 40, 50, 56, 42, 79, 42, 85, 96, 23]

[10, 20, 30, 40, 50, 10, 20, 30, 40, 50, 10, 20, 30, 40, 50]

96

2

[79, 42, 85, 96, 23]

[79, 85, 23]

[10, 20, 30, 40, 50, 60]

[56, 42, 79, 42, 85, 17, 96, 23]

[56, 42, 79, 85, 17, 96, 23]

[60, 50, 40, 30, 20, 10]

[]

Comprehensions in Python

 Comprehensions in Python provide us with a short and concise way to

construct new sequences (such as lists, set, dictionary etc.) using sequences which

have been already defined.

Python supports the following 3 types of comprehensions:

 List Comprehensions

 Dictionary Comprehensions

 Set Comprehensions

 Generator Comprehensions

List Comprehensions:

 List Comprehensions provide an elegant way to create new lists.

 The following is the basic structure of a list comprehension:

Syntax:

output_list = [output_exp for var in input_list if (var satisfies this condition)]

Note: List comprehension may or may not contain an if condition. List

comprehensions can contain multiple for (nested list comprehensions).

Example #1: Suppose we want to create an output list which contains only the even

numbers which are present in the input list. Let‘s see how to do this using for loops

and list comprehension and decide which method suits better.

Constructing output list WITHOUT Using List comprehensions

input_list = [1, 2, 3, 4, 4, 5, 6, 7, 7]

output_list = []

Using loop for constructing output list

for var in input_list:

 if var % 2 == 0:

 output_list.append(var)

print("Output List using for loop:", output_list)

Output:

Output List using for loop: [2, 4, 4, 6]

Using List comprehensions for constructing output list

input_list = [1, 2, 3, 4, 4, 5, 6, 7, 7]

Output_list = [var for var in input_list if var % 2 == 0]

print("Output List using list comprehensions:",

 Output_list)

Output:

Output List using list comprehensions: [2, 4, 4, 6]

Example #2: Suppose we want to create an output list which contains squares of all

the numbers from 1 to 9. Let‘s see how to do this using for loops and list

comprehension.

Constructing output list using for loop

output_list = []

for var in range(1, 10):

 output_list.append(var ** 2)

print("Output List using for loop:", output_list)

Output:

Output List using for loop: [1, 4, 9, 16, 25, 36, 49, 64, 81]

Constructing output list using list comprehension

list_using_comp = [var**2 for var in range(1,10)]

print("Output List using list comprehension:",list_using_comp)

Output:

Output List using list comprehension: [1, 4, 9, 16, 25, 36, 49, 64, 81]

Dictionary Comprehensions:

 Extending the idea of list comprehensions, we can also create a dictionary using

dictionary comprehensions.

 The basic structure of a dictionary comprehension looks like below.

Syntax:

output_dict = {key:value for (key, value) in iterable if (key, value satisfy this condition)}

Example #1: Suppose we want to create an output dictionary which contains only the

odd numbers that are present in the input list as keys and their cubes as values. Let‘s

see how to do this using for loops and dictionary comprehension.

 input_list = [1, 2, 3, 4, 5, 6, 7]

 output_dict = {}

Using loop for constructing output dictionary

 output_dict = {}

for val in input_list:

 if val % 2 != 0:

 output_dict[val] = val**3

print("Output Dictionary using for loop:", output_dict)

Output:

Output Dictionary using for loop: {1: 1, 3: 27, 5: 125, 7: 343}

Using Dictionary comprehensions for constructing output dictionary

 input_list = [1,2,3,4,5,6,7]

 dict_using_comp = {val:val ** 3 for val in input_list if val % 2 != 0}

 print("Output Dictionary using dictionary comprehensions:",

 dict_using_comp)

Output:

Output Dictionary using dictionary comprehensions: {1: 1, 3: 27, 5: 125, 7: 343}

Example #2: Given two lists containing the names of states and their corresponding

capitals, construct a dictionary which maps the states with their respective capitals.

Let‘s see how to do this using for loops and dictionary comprehension.

state = ['Gujarat', 'Maharashtra', 'Rajasthan']

capital = ['Gandhinagar', 'Mumbai', 'Jaipur']

output_dict = {}

Using loop for constructing output dictionary

for (key, value) in zip(state, capital):

 output_dict[key] = value

print("Output Dictionary using for loop:",output_dict)

Output:

Output Dictionary using for loop: {'Gujarat': 'Gandhinagar',

 'Maharashtra': 'Mumbai',

 'Rajasthan': 'Jaipur'}

Using Dictionary comprehensions for constructing output dictionary

state = ['Gujarat', 'Maharashtra', 'Rajasthan']

capital = ['Gandhinagar', 'Mumbai', 'Jaipur']

dict_using_comp = {key:value for (key, value) in zip(state, capital)}

print("Output Dictionary using dictionary comprehensions:",

 dict_using_comp)

Output:

Output Dictionary using dictionary comprehensions: {'Rajasthan': 'Jaipur',

 'Maharashtra': 'Mumbai',

 'Gujarat': 'Gandhinagar'}

Set Comprehensions:

 Set comprehensions are pretty similar to list comprehensions.

 The only difference between them is that set comprehensions use curly brackets

{ }.

Let‘s look at the following example to understand set comprehensions.

Example #1 : Suppose we want to create an output set which contains only the even

numbers that are present in the input list. Note that set will discard all the duplicate

values. Let‘s see how we can do this using for loops and set comprehension.

input_list = [1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 7]

output_set = set()

Using loop for constructing output set

for var in input_list:

 if var % 2 == 0:

 output_set.add(var)

 print("Output Set using for loop:", output_set)

Output:

Output Set using for loop: {2, 4, 6}

Using Set comprehensions for constructing output set

input_list = [1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 7]

set_using_comp = {var for var in input_list if var % 2 == 0}

print("Output Set using set comprehensions:", set_using_comp)

Output:

Output Set using set comprehensions: {2, 4, 6}

Generator Comprehensions

 The syntax of Generator Expression is similar to List Comprehension except it

uses parentheses () instead of square brackets [].

 A generator is a special kind of iterator, which stores the instructions for how

to generate each of its members, in order, along with its current state of

iterations.

 It generates each member, one at a time, only as it is requested via iteration.

 Generators are special iterators in Python which returns the generator object.

 The point of using it, is to generate a sequence of items without having to store

them in memory and this is why we can use Generator only once.

Example:Here, we have created a List num_cube_lc using List Comprehension and

Generator Expression is defined as num_cube_generator.

#Generator Expression

 num_cube_lc=[n**3 for n in range(1,11) if n%2==0] #List

Comprehension

 num_cube_generator=(num**3 for num in range(1,11) if

num%2==0) #Generator Expression

 print(f"List Comprehension = {num_cube_lc}")

 print(f"Generator Expression = {num_cube_generator}")

 #sum(num_cube_generator)

 print(f"Sum = {sum(num_cube_generator)}")

Note: Recall that a list readily stores all of its members; you can access any of

its contents via indexing. A generator, on the other hand, does not store any

items. Instead, it stores the instructions for generating each of its members, and

stores its iteration state; this means that the generator will know if it has

generated its second member, and will thus generate its third member the next

time it is iterated on.

The whole point of this is that you can use a generator to produce a long

sequence of items, without having to store them all in memory.

The range generator

An extremely popular built-in generator is range, which, given the values:

 ‗start‘ (inclusive, default=0)

 ‗stop‘ (exclusive)

 ‗step‘ (default=1)

will generate the corresponding sequence of integers (from start to stop, using

the step size) upon iteration

Strings and Slicing

Strings

 In Python, string is a contiguous sequence of Unicode Characters.

 In the computer, everything is stored in binary format, i.e. 0(zero)'s and 1(one)'s.

The elementary storage unit is called a bit, which can store either zero or one.

 To represent various letters, symbols and numbers in different languages, we

need 16 bits.

 Each different sequence of the 16 bits represent one symbol like A or B or C

etc.

 This system of representing the various existing letters, numbers and symbols (+

_ - $ % @ ! etc) is called UNICODE.

 Strings are represented with prefixing and suffixing the characters with

quotation marks (either single quotes (') or double quotes (")).

 An individual character within a string is accessed using an index. The index

should always be an integer (positive or negative).

 The index starts from 0 to n-1, where n is the number of characters in the string.

 The contents of the string cannot be changed after it is created.

 The return value of the Python input() statement is, by default, a string.

 A string of length 1 can be treated as a character.

 [Hint: Some of the words which appear in violet are links. Click to know more

about them.]

 Take string as input from the console using input() function, print the given

input string as shown in the example.

 We have 5 types of operations which can be performed on strings in Python

1. Indexing

2. Slicing

3. Concatenation

4. Repetition

5. Membership

1.Indexing

 We can access a String by using its index. The index is enclosed in square

brackets [] in Python. Index value always starts with 0.

 We have two types of indexing in Python. If the index starts from the first

character of a string, then it is Positive Index and it starts with 0.

 If the index starts from the last character of a String, then it is negative Index

and its starts with -1

 Positive indexing helps in accessing the string from the beginning.

 Negative indexing helps in accessing the string from the end.

Let us consider the below example:

a = "HELLO"

print(a[0]) # prints the 0th index value

 'H'

Here at '0'th index 'H' is available, so we traverse from left to right.

print(a[-1]) # prints -1 index value

 'O'

Here at '-1' index 'O' is available to traverse from right to left.

 2.Slicing

 Python provides many ways to extract a part of a string using a concept

called ―Slicing‖.

 Slicing makes it possible to access parts (segments) of the string by

providing a startIndex and an endIndex.

The syntax for using the slice operation on a string is:

 [startIndex : endIndex : step]#where is the string variable#startIndex,

endIndex and step are all optional

Example: In the below code: slice[start : stop : step] operator extracts sub string

from the string.

 A segment of a string is called a slice.

 The indexes start and stop should be valid.

 step is the increment or decrement . A positive step will travel left to right

and increments the index by step.

 A negative step will travel from right to left and decrements the index by

step.

 If we are not providing starting of index position in Slice [] operator then

interpreter takes starting index zero(0) as default.

 If end index is not specified for slice [] operator then Interpreter takes the

end of String as default stop index.

Example1:

lang = "Python"

print(lang[0:]) # means it prints 0th index position to ending index of

String.

Python

print(lang[:6]) # means it prints 0th index to (n-1) i.e. 6-1 = 5th position

of String.

Python

Example2:

a = "HELLO"

Print(a[0:4]) # index starts from 0 and ends before 4 i.e.3.

HELL

Print(a[:3]) # prints 0th index to 2nd index(3 - 1)

HEL

Print(a[0:]) # Starts at 0 prints upto last index.

HELLO

Note:In the following example start and stop are not given, so they will be

defaulted to beginning and end of the string.

 The step is positive indicating left to right traversal and increment is 1.

Example:

a = "Python"

print (a[::1])

Output:

 Python

Note:

 In the following example start and stop are not given, so they will be

defaulted to end and beginning of the string.

 The step is negative indicating right to left traversal and decrement is 1.

Example:

a = "Python"

print(a[::-1])

Output:

nohtyP

Let us take another example:

Example:

a = "Python"

print(a[-1::-3])

Output:

'nt'

Note: Here we are indicating start as -1 and stop not specified means traverse

from right to left till start of the string and step is -3 means decrement is done

by 3 from right to left of a string.

Example:

a = "Python"

print(a[4:1:-1])

The result is

Output:

'oht'

Note: Here we are indicating start as 4 and stop as 1 and index as -1. So it will

start index 4(o) and will traverse right to left till index 2(t).

Example:

a = "Python"

print(a[2:5:-1])

Output:

'' (Null string)

Note:Here we are indicating start as 2 and stop as 5 (which implies that the

direction as left to right, but the step is -1 which means the direction is right

to left.

Because this is not possible so it returns a null string

3.Cancatination

 String Concatenation is the technique of combining two strings. String

Concatenation can be done using many ways.

We can perform string concatenation using following ways:

1. Using + operator

2. Using join() method

3. Using % operator

4. Using format() function

5. Using , (comma)

Using + Operator

It‘s very easy to use + operator for string concatenation. This operator

can be used to add multiple strings together. However, the arguments

must be a string.

Note: Strings are immutable, therefore, whenever it is concatenated, it is

assigned to a new variable.

Example:

 # Python program to demonstrate string concatenation

 var1 = "Hello"

var2 = "World"

join() method is used to combine the strings

print("".join([var1, var2]))

join() method is used here to combine

the string with a separator Space(" ")

https://www.geeksforgeeks.org/python-string-concatenation/#+
https://www.geeksforgeeks.org/python-string-concatenation/#join
https://www.geeksforgeeks.org/python-string-concatenation/#%
https://www.geeksforgeeks.org/python-string-concatenation/#format

var3 = " ".join([var1, var2])

print(var3)

Output

Hello World

Here, the variable var1 stores the string ―Hello ‖ and variable var2 stores

the string ―World‖. The + Operator combines the string that is stored in

the var1 and var2 and stores in another variable var3.

Using join() Method

The join() method is a string method and returns a string in which the elements

of sequence have been joined by str separator.

Example:

 # Python program to demonstrate string concatenation

 var1 = "Hello"

 var2 = "World"

% Operator is used here to combine the string

print("% s % s" % (var1, var2))

Output

HelloWorld

Hello World

In the above example, the variable var1 stores the string ―Hello‖ and variable

var2 stores the string ―World‖. The join() method combines the string that is

stored in the var1 and var2. The join method accepts only the list as it‘s

argument and list size can be anything. We can store the combined string in

another variable var3 which is separated by space.

 Using % Operator

We can use % operator for string formatting, it can also be used for string

concatenation. It‘s useful when we want to concatenate strings and perform

simple formatting.

Example:

Python program to demonstrate string concatenation

 var1 = "Hello"

 var2 = "World"

https://www.geeksforgeeks.org/join-function-python/

% Operator is used here to combine the string

print("% s % s" % (var1, var2))

Output

Hello World

Here, the % Operator combine the string that is stored in the var1 and var2. The

%s denotes string data type. The value in both the variable is passed to the

string %s and becomes ―Hello World‖.

Using format() function

str.format() is one of the string formatting methods in Python, which allows

multiple substitutions and value formatting. This method lets us concatenate

elements within a string through positional formatting.

Example:

Python program to demonstrate string concatenation

 var1 = "Hello"

var2 = "World"

format function is used here to

combine the string

print("{} {}".format(var1, var2))

store the result in another variable

var3 = "{} {}".format(var1, var2)

 print(var3)

Output
Hello World

Hello World

Here, the format() function combines the string that is stored in the var1 and

var2 and stores in another variable var3. The curly braces {} are used to set the

position of strings. The first variable stores in the first curly braces and second

variable stores in the second curly braces. Finally it prints the value ―Hello

World‖.

Using , (comma)

 ―,‖ is a great alternative to string concatenation using ―+‖. when you want to

include a single whitespace.

Example:

 # Python program to demonstrate string concatenation

https://www.geeksforgeeks.org/python-format-function/

var1 = "Hello"

var2 = "World"

, to combine data types with a single whitespace.

print(var1, var2)

Output
Hello World

Use , when you want to combine data types with a single whitespace in

between.

4.Repetition

 Sometimes we need to repeat the string in the program, and we can do this

easily by using the repetition operator in Python.

 The repetition operator is denoted by a '* ' symbol and is useful for repeating

strings to a certain length.

 Example:

str = 'Python program'

print(str*3)

Output

 Python programPython programPython program

 Similarly, it is also possible to repeat any part of the string by slicing:

Example

str = 'Python program'

print(str[7:9]*3) #Repeats the seventh and eighth character three times

Output

prprpr

 5. Membership

 Membership operators are operators used to validate the membership of a

value. It tests for membership in a sequence, such as strings, lists, or tuples.

in operator: The ‗in‘ operator is used to check if a value exists in a sequence or

not.

 Evaluates to true if it finds a variable in the specified sequence and false

otherwise.

Python program to illustrate Finding common member in list using 'in'

operator

list1=[1,2,3,4,5]

list2=[6,7,8,9]

for item in list1:

 if item in list2:

 print("overlapping")

else:

 print("not overlapping")

Output:

 not overlapping

„not in‟ operator- Evaluates to true if it does not finds a variable in the specified

sequence and false otherwise.

Example:

Python program to illustrate not 'in' operator

x = 24

y = 20

list = [10, 20, 30, 40, 50];

if (x not in list):

 print("x is NOT present in given list")

else:

 print("x is present in given list")

if (y in list):

 print("y is present in given list")

else:

 print("y is NOT present in given list")

UNIT 3

Arrays, Searching, Sorting

UNIT -III

Arrays - Overview, Types of Arrays, Operations on Arrays, Arrays vs List.

Searching - Linear Search and Binary Search.

Sorting - Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort

Arrays in Python
Overview:

 An array is a collection of items stored at contiguous memory locations.

 The idea is to store multiple items of the same type together.

 This makes it easier to calculate the position of each element by simply adding an

offset to a base value, i.e., the memory location of the first element of the array

(generally denoted by the name of the array).

For simplicity, we can think of an array a fleet of stairs where on each step is

placed a value (let‟s say one of your friends). Here, you can identify the location

of any of your friends by simply knowing the count of the step they are on.

 Array can be handled in Python by a module named array. They can be useful

when we have to manipulate only a specific data type values.

 A user can treat lists as arrays. However, user cannot constraint the type of

elements stored in a list. If you create arrays using the array module, all elements

of the array must be of the same type.

https://www.geeksforgeeks.org/python-list/

Creating a Array

Array in Python can be created by importing array

module. array(data_type, value_list) is used to create an array with data type and value

list specified in its arguments.

Python program to demonstrate Creation of Array

importing "array" for array creations

import array as arr

creating an array with integer type

a = arr.array('i', [1, 2, 3])

printing original array

print ("The new created array is : ", end =" ")

for i in range (0, 3):

 print (a[i], end =" ")

print()

creating an array with float type

b = arr.array('d', [2.5, 3.2, 3.3])

printing original array

print ("The new created array is : ", end =" ")

for i in range (0, 3):

 print (b[i], end =" ")

Output :

The new created array is : 1 2 3

The new created array is : 2.5 3.2 3.3

Some of the data types are mentioned below which will help in creating an array of

different data types.

Array operations

Some of the basic operations supported by an array are as follows:

o Traverse - It prints all the elements one by one.

o Insertion - It adds an element at the given index.

o Deletion - It deletes an element at the given index.

o Search - It searches an element using the given index or by the value.

o Update - It updates an element at the given index.

1.Traverse(Accessing array elements):We can access the array elements using the

respective indices of those elements.

Example:

import array as arr

a = arr.array('i', [2, 4, 6, 8])

print("First element:", a[0])

print("Second element:", a[1])

print("Second last element:", a[-1])

Output:

First element: 2

Second element: 4

Second last element: 8

Explanation: In the above example, we have imported an array, defined a variable named

as "a" that holds the elements of an array and print the elements by accessing elements

through indices of an array.

2.Insertion(Adding Elements to a Array)

1.insert(): Insert is used to insert one or more data elements into an array. Based on the

requirement, a new element can be added at the beginning, end, or any given

 index of array.

2.append(): It is also used to add the value mentioned in its arguments at the end of the

 array.

Example:

 # Python program to demonstrate Adding Elements to a Array

importing "array" for array creations

import array as arr

array with int type

a = arr.array('i', [1, 2, 3])

print ("Array before insertion : ", end =" ")

for i in range (0, 3):

 print (a[i], end =" ")

print()

https://www.geeksforgeeks.org/python-list-insert/
https://www.geeksforgeeks.org/append-extend-python/

inserting array using

insert() function

a.insert(1, 4)

print ("Array after insertion : ", end =" ")

for i in (a):

 print (i, end =" ")

print()

array with float type

b = arr.array('d', [2.5, 3.2, 3.3])

print ("Array before insertion : ", end =" ")

for i in range (0, 3):

 print (b[i], end =" ")

print()

adding an element using append()

b.append(4.4)

print ("Array after insertion : ", end =" ")

for i in (b):

 print (i, end =" ")

print()

Output :

Array before insertion : 1 2 3

Array after insertion : 1 4 2 3

Array before insertion : 2.5 3.2 3.3

Array after insertion : 2.5 3.2 3.3 4.4

3.Deletion(Removing Elements from the Array)

Elements can be removed from the array by using

 1. remove(): It removes one element at a time, to remove range of elements,

 iterator is used.

https://www.geeksforgeeks.org/python-list-remove/

 2. pop(): it is also be used to remove and return an element from the array,

 but by default it removes only the last element of the array, to

remove element from a specific position of the array, index of the

 element is passed as an argument to the pop() method.

Note – Remove method in List will only remove the first occurrence of the searched element.

Example:

Python program to demonstrate Removal of elements in a Array

importing "array" for array operations

import array

initializing array with array values

initializes array with signed integers

arr = array.array('i', [1, 2, 3, 1, 5])

printing original array

print ("The new created array is : ", end ="")

for i in range (0, 5):

 print (arr[i], end =" ")

using pop() to remove element at 2nd position

print ("The popped element is : ", end ="")

print (arr.pop(2))

printing array after popping

print ("The array after popping is : ", end ="")

for i in range (0, 4):

 print (arr[i], end =" ")

using remove() to remove 1st occurrence of 1

arr.remove(1)

printing array after removing

print ("The array after removing is : ", end ="")

for i in range (0, 3):

 print (arr[i], end =" ")

https://www.geeksforgeeks.org/python-list-pop/

Output:

The new created array is : 1 2 3 1 5

The popped element is : 3

The array after popping is : 1 2 1 5

The array after removing is : 2 1 5

4.Search(Searching element in a Array)

In order to search an element in the array we use a python

 1. index():This function returns the index of the first occurrence of value mentioned

in arguments.

Example:

Python code to demonstrate searching an element in array

importing array module

import array

initializing array with array values

initializes array with signed integers

arr = array.array('i', [1, 2, 3, 1, 2, 5])

printing original array

print ("The new created array is : ", end ="")

for i in range (0, 6):

 print (arr[i], end =" ")

using index() to print index of 1st occurrenece of 2

print ("The index of 1st occurrence of 2 is : ", end ="")

print (arr.index(2))

using index() to print index of 1st occurrenece of 1

print ("The index of 1st occurrence of 1 is : ", end ="")

print (arr.index(1))

https://www.geeksforgeeks.org/python-list-index/

Output:

The new created array is : 1 2 3 1 2 5

The index of 1st occurrence of 2 is : 1

The index of 1st occurrence of 1 is : 0

5.Updating Elements in a Array

In order to update an element in the array we simply reassign a new value to the desired

index we want to update.

Example:

Python code to demonstrate how to update an element in array

importing array module

import array

initializing array with array values

initializes array with signed integers

arr = array.array('i', [1, 2, 3, 1, 2, 5])

printing original array

print ("Array before updation : ", end ="")

for i in range (0, 6):

 print (arr[i], end =" ")

print ("\r")

updating a element in a array

arr[2] = 6

print("Array after updation : ", end ="")

for i in range (0, 6):

 print (arr[i], end =" ")

print()

updating a element in a array

arr[4] = 8

print("Array after updation : ", end ="")

for i in range (0, 6):

 print (arr[i], end =" ")

Output:

Array before updation : 1 2 3 1 2 5

Array after updation : 1 2 6 1 2 5

Array after updation : 1 2 6 1 8 5

Slicing of a Array

 In Python array, there are multiple ways to print the whole array with all the

elements, but to print a specific range of elements from the array, we use Slice

operation.

 Slice operation is performed on array with the use of colon(:). To print elements

from beginning to a range use [:Index], to print elements from end use [:-Index],

to print elements from specific Index till the end use [Index:], to print elements

within a range, use [Start Index:End Index] and to print whole List with the use of

slicing operation, use [:].

 Further, to print whole array in reverse order, use [::-1].

Example:

Python program to demonstrate slicing of elements in a Array

importing array module

https://www.geeksforgeeks.org/python-list-comprehension-and-slicing/
https://www.geeksforgeeks.org/python-list-comprehension-and-slicing/

import array as arr

creating a list

l = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

a = arr.array('i', l)

print("Initial Array: ")

for i in (a):

 print(i, end =" ")

Print elements of a range

using Slice operation

Sliced_array = a[3:8]

print("\nSlicing elements in a range 3-8: ")

print(Sliced_array)

Print elements from a

pre-defined point to end

Sliced_array = a[5:]

print("\nElements sliced from 5th "

 "element till the end: ")

print(Sliced_array)

Printing elements from

beginning till end

Sliced_array = a[:]

print("\nPrinting all elements using slice operation: ")

print(Sliced_array)

Output

Initial Array:

1 2 3 4 5 6 7 8 9 10

Slicing elements in a range 3-8:

array('i', [4, 5, 6, 7, 8])

Elements sliced from 5th element till the end:

array('i', [6, 7, 8, 9, 10])

Printing all elements using slice operation:

array('i', [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Types of Arrays

There are different types of Arrays:

 1.One Dimensional Arrays(1D Arrays)

 2.Two Dimensional Arrays(2D Arrays)

 3. Three Dimensional Arrays(3D Arrays)

1.One Dimentional Array: The array which consists the values in single dimension is

called “One Dimentional Array”.

Syntax to create 1D Array:

Ex:

 #Creating Integer array

 import array as arr

A=arr.array('i',[10,20,30,40,50])

print(A)

 #Creating Integer array

import array as arr

A=arr.array('f',[10.5,20.5,30.7,40.9,50.4])

print(A)

Output:

Import array as arr

Array_name=arr.array([datatype,[List of values])

2.Two-Dimensional Array (2-D Array):A 2D array is an array of arrays that can be

represented in matrix form like rows and columns.

 In this array, the position of data elements is defined with two indices instead of a

single index.

Syntax

Access Two-Dimensional Array

In Python we can access elements of a two-dimensional array using two indices. The first

index refers to the indexing of the list and the second index refers to the position of the

elements. If we define only one index with an array name, it returns all the elements of 2-

dimensional stored in the array

Array_name = [rows][columns] # declaration of 2D array

Arr-name = [[m1, m2, m3, … . mn], [n1, n2, n3, … .. nn]]

Where m is the row and n is the column of the table.

https://www.javatpoint.com/python-tutorial
https://www.javatpoint.com/python-arrays

2dSimple.py

Student_dt = [[72, 85, 87, 90, 69], [80, 87, 65, 89, 85], [96, 91, 70, 78, 97], [90, 93, 91, 90

, 94], [57, 89, 82, 69, 60]]

#print(student_dt[])

print(Student_dt[1]) # print all elements of index 1

print(Student_dt[0]) # print all elements of index 0

print(Student_dt[2]) # print all elements of index 2

print(Student_dt[3][4]) # it defines the 3rd index and 4 position of the data element.

Output:

Explanation:In the above example, we passed 1, 0, and 2 as parameters into 2D array that

prints the entire row of the defined index. And we have also passed student_dt[3][4] that

represents the 3
rd

 index and 4
th
 position of a 2-dimensional array of elements to print a

particular element.

Traversing the element in 2D (two dimensional)

Program.py

write a program to traverse every element of the two-

dimensional array in Python.

Student_dt = [[72, 85, 87, 90, 69], [80, 87, 65, 89, 85], [96, 91, 70, 78, 97], [90, 93,

 91, 90, 94], [57, 89, 82, 69, 60]]

Use for loop to print the entire elements of the two dimensional array.

for x in Student_dt: # outer loop

 for i in x: # inner loop

 print(i, end = " ") # print the elements

 print()

Output:

Insert elements in a 2D (Two Dimensional) Array

 We can insert elements into a 2 D array using the insert() function that specifies the

element' index number and location to be inserted.

Insert.py

Write a program to insert the element into the 2D (two dimensional) array of Pyth

on.

from array import * # import all package related to the array.

arr1 = [[1, 2, 3, 4], [8, 9, 10, 12]] # initialize the array elements.

print("Before inserting the array elements: ")

print(arr1) # print the arr1 elements.

Use the insert() function to insert the element that contains two parameters.

arr1.insert(1, [5, 6, 7, 8]) # first parameter defines the index no., and second param

eter defines the elements

print("After inserting the array elements ")

for i in arr1: # Outer loop

 for j in i: # inner loop

 print(j, end = " ") # print inserted elements.

 print()

Output:

Update elements in a 2 -D (Two Dimensional) Array

 In a 2D array, the existing value of the array can be updated with a new value. In

this method, we can change the particular value as well as the entire index of the

array. Let's understand with an example of a 2D array, as shown below.

Create a program to update the existing value of a 2D array in Python.

Update.py

from array import * # import all package related to the array.

arr1 = [[1, 2, 3, 4], [8, 9, 10, 12]] # initialize the array elements.

print("Before inserting the array elements: ")

print(arr1) # print the arr1 elements.

arr1[0] = [2, 2, 3, 3] # update the value of the index 0

arr1[1][2] = 99 # define the index [1] and position [2] of the array element to update

 the value.

print("After inserting the array elements ")

for i in arr1: # Outer loop

 for j in i: # inner loop

 print(j, end = " ") # print inserted elements.

 print()

Output:

Delete values from a 2D (two Dimensional) array in Python

 In a 2- D array, we can remove the particular element or entire index of the array

using del() function in Python.

Delete.py

from array import * # import all package related to the array.

arr1 = [[1, 2, 3, 4], [8, 9, 10, 12]] # initialize the array elements.

print("Before Deleting the array elements: ")

print(arr1) # print the arr1 elements.

del(arr1[0][2]) # delete the particular element of the array.

del(arr1[1]) # delete the index 1 of the 2-D array.

print("After Deleting the array elements ")

for i in arr1: # Outer loop

 for j in i: # inner loop

 print(j, end = " ") # print inserted elements.

 print()

Output:

Size of a 2D array

 A len() function is used to get the length of a two-dimensional array. In other

words, we can say that a len() function determines the total index available in 2-

dimensional arrays.

 The len() function to get the size of a 2-dimensional array in Python.

Size.py

array_size = [[1, 3, 2],[2,5,7,9], [2,4,5,6]] # It has 3 index

print("The size of two dimensional array is : ")

print(len(array_size)) # it returns 3

array_def = [[1, 3, 2], [2, 4, 5, 6]] # It has 2 index

print("The size of two dimensional array is : ")

print(len(array_def)) # it returns 2

Output:

Write a program to print the sum of the 2-dimensional arrays in Python.

Matrix.py

def two_d_matrix(m, n): # define the function

 Outp = [] # initially output matrix is empty

 for i in range(m): # iterate to the end of rows

 row = []

 for j in range(n): # j iterate to the end of column

 num = int(input(f "Enter the matrix [{0}][{j}]"))

 row.append(num) # add the user element to the end of the row

 Outp.append(row) # append the row to the output matrix

 return Outp

def sum(A, B): # define sum() function to add the matrix.

 output = [] # initially, it is empty.

 print("Sum of the matrix is :")

 for i in range(len(A)): # no. of rows

 row = []

 for j in range(len(A[0])): # no. of columns

 row.append(A[i][j] + B[i][j]) # add matrix A and B

 output.append(row)

 return output # return the sum of both matrix

m = int(input("Enter the value of m or Row\n")) # take the rows

n = int(input("Enter the value of n or columns\n")) # take the columns

print("Enter the First matrix ") # print the first matrix

A = two_d_matrix(m, n) # call the matrix function

print("display the first (A) matrix")

print(A) # print the matrix

print("Enter the Second (B) matrix ")

B = two_d_matrix(m, n) # call the matrix function

print("display the Second (B) matrix")

print(B) # print the B matrix

s= sum(A, B) # call the sum function

print(s) # print the sum of A and B matrix.

Output:

3.Three Dimensional Arrays:The array which consists multiple dimensions is called

“3-D Array”.

Example:

 array = [[['*' for col in range(6)] for col in range(4)] for row in range(3)]

print(array)

Output:

[[['*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*', '*']],

[['*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*'

, '*'], ['*', '*', '*', '*', '*', '*']], [['*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*', '*'], ['*', '*', '*', '*', '*',

'*'], ['*', '*', '*', '*', '*', '*']]]

List Vs Array

List Array

Can consist of elements belonging to

different data types

Only consists of elements belonging to the

same data type

No need to explicitly import a module for

declaration

Need to explicitly import a module for

declaration

Cannot directly handle arithmetic

operations Can directly handle arithmetic operations

Can be nested to contain different type of

elements

Must contain either all nested elements of

same size

Preferred for shorter sequence of data items Preferred for longer sequence of data items

Greater flexibility allows easy modification

(addition, deletion) of data

Less flexibility since addition, deletion has

to be done element wise

The entire list can be printed without any

explicit looping

A loop has to be formed to print or access

the components of array

Consume larger memory for easy addition

of elements

Comparatively more compact in memory

size

Extra Content about Types of Arrays

Python: Convert a 1D array to a 2D Numpy array or Matrix

 We will discuss how to convert a 1D Numpy Array to a 2D numpy array or Matrix

using reshape() function.

 We will also discuss how to construct the 2D array row wise and column wise, from

a 1D array.

 Suppose we have a 1D numpy array of size 10,

 # create 1D numpy array from a list

arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

print('1D Numpy array:')

print(arr)

Output:

 [0 1 2 3 4 5 6 7 8 9]

Reshape 1D array to 2D array or Matrix

First, import the numpy module,

import numpy as np

 Now to convert the shape of numpy array, we can use the reshape() function of the

numpy module,

numpy.reshape()

numpy.reshape(arr, newshape, order='C')

Accepts following arguments,

 a: Array to be reshaped, it can be a numpy array of any shape or a list or list of lists.

 newshape: New shape either be a tuple or an int.

 order: The order in which items from the input array will be used.

It returns a new view object (if possible, otherwise returns a copy) of new shape.

Let‟s use this to convert our 1D numpy array to 2D numpy array,

 arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Convert 1D array to a 2D numpy array of 2 rows and 3 columns

arr_2d = np.reshape(arr, (2, 5))

print(arr_2d)

Output:

[[0 1 2 3 4]

[5 6 7 8 9]]

 We passed the 1D array as the first argument and the new shape i.e. a tuple (2, 5) as

the second argument. It returned a 2D view of the passed array.

 An important point here is that the new shape of the array must be compatible with

the original shape of the input array, otherwise it will raise the ValueError. For

example, if we try to reshape out 1D numpy array of 10 elements to a 2D array of

size 2X3, then it will raise error,

Converting 1D array to a 2D numpy array of incompatible shape will cause error

 arr_2d = np.reshape(arr, (2, 3))

Error:

ValueError: cannot reshape array of size 10 into shape (2,3)

It raised the error because 1D array of size 10 can only be reshaped to a 2D array of size

2X5 or 5X2. But in the above example, we tried to convert it into a shape which is

incompatible with its size.

Reshaped 2D array is a view of 1D array

If possible then reshape() function returns a view of the original array and any

modification in the view object will affect the original input array too. For example,

arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

arr_2d = np.reshape(arr, (2, 5))

Modify the 2D numpy array (View object)

arr_2d[0][0] = 22

print('1D Numpy array:')

print(arr)

print('2D Numpy array:')

print(arr_2d)

Output:

1D Numpy array:

[22 1 2 3 4 5 6 7 8 9]

2D Numpy array:

[[22 1 2 3 4]

[5 6 7 8 9]]

Convert a 1D Numpy array to a 3D Numpy array using numpy.reshape()

Suppose we have a 1D numpy array of 12 elements,

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

Now let‟s convert this 1D array to a 3D numpy array i.e.

Convert 1D Numpy array to a 3D array with 2 matrices of shape 2X3

arr_3d = np.reshape(arr, (2, 2, 3))

print('3D Numpy array:')

print(arr_3d)

Output:

3D Numpy array:

[[[1 2 3]

[4 5 6]]

[[7 8 9]

[10 11 12]]]

We passed the 1D array as the first argument and the new shape i.e. a tuple (2, 2, 3) as the

second argument. It returned a 3D view of the passed array.

Convert 1D Numpy array to a 2D numpy array along the column

In the previous example, when we converted a 1D array to a 2D array or matrix, then the

items from input array will be read row wise i.e.

 1st row of 2D array was created from items at index 0 to 2 in input array

 2nd row of 2D array was created from items at index 3 to 5 in input array

 3rd row of 2D array was created from items at index 6 to 8 in input array

Now suppose we want to construct the matrix / 2d array column wise. For that we can

pass the order parameter as „F‟ in the reshape() function i.e.

arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

column wise conversion of 1D numpy array to 2D Numpy array

arr_2d = np.reshape(arr, (2, 5), order='F')

print('2D Numpy array:')

print(arr_2d)

Output:

2D Numpy array:

[[0 2 4 6 8]

[1 3 5 7 9]]

It converted the 1D array to a 2D matrix and this matrix was created column wise i.e.

 1st column of 2D array was created from items at index 0 to 2 in input array

 2nd column of 2D array was created from items at index 3 to 5 in input array

 3rd column of 2D array was created from items at index 6 to 8 in input array

Convert 2D Array to 1D Array as copy

If possible then numpy.reshape() returns a view of the original array. Now suppose we

want to create a 2D copy of the 1D numpy array then use the copy() function along with

the reshape() function,

arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

arr_2d = np.reshape(arr, (2, 5)).copy()

Modify the 2D numpy array and it will not affect original 1D array

arr_2d[0][0] = 22

print('1D Numpy array:')

print(arr)

print('2D Numpy array:')

print(arr_2d)

Output:

1D Numpy array:

[0 1 2 3 4 5 6 7 8 9]

2D Numpy array:

[[22 1 2 3 4]

[5 6 7 8 9]]

It created a 2D copy of the 1D array. Any changes made in this 2D array will not affect

the original array.

The complete example is as follows,

import numpy as np

def main():

print('*** Convert a 1D array to a 2D Numpy array ***')

create 1D numpy array from a list

arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

print('1D Numpy array:')

print(arr)

Convert 1D array to a 2D numpy array of 2 rows and 3 columns

arr_2d = np.reshape(arr, (2, 5))

print('2D Numpy array:')

print(arr_2d)

print('Shape of 2D array must be compatible to 1D array')

Converting 1D array to a 2D numpy array of incompatible shape will cause error

#arr_2d = np.reshape(arr, (2, 3))

#ValueError: cannot reshape array of size 10 into shape (2,3)

print('Reshaped 2D array is a view of 1D array')

Modify the 2D numpy array (View object)

arr_2d[0][0] = 22

print('1D Numpy array:')

print(arr)

print('2D Numpy array:')

print(arr_2d)

print('Convert a 1D Numpy array to a 3D Numpy array using numpy.reshape()')

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

print('1D Numpy array:')

print(arr)

Convert 1D Numpy array to a 3D array with 2 matrices of shape 2X3

arr_3d = np.reshape(arr, (2, 2, 3))

print('3D Numpy array:')

print(arr_3d)

print('*** Convert 1D Numpy array to 2D numpy array along the column ***')

arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

print('1D Numpy array:')

print(arr)

column wise conversion of 1D numpy array to 2D Numpy array

arr_2d = np.reshape(arr, (2, 5), order='F')

print('2D Numpy array:')

print(arr_2d)

print('*** Convert 2D aray to 1D array as copy ***')

arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

print('1D Numpy array:')

print(arr)

arr_2d = np.reshape(arr, (2, 5)).copy()

print('2D Numpy array:')

print(arr_2d)

Modify the 2D numpy array and it will not affect original 1D array

arr_2d[0][0] = 22

print('1D Numpy array:')

print(arr)

print('2D Numpy array:')

print(arr_2d)

if __name__ == '__main__':

main()

Output

*** Convert a 1D array to a 2D Numpy array ***

1D Numpy array:

[0 1 2 3 4 5 6 7 8 9]

2D Numpy array:

[[0 1 2 3 4]

[5 6 7 8 9]]

Shape of 2D array must be compatible to 1D array

Reshaped 2D array is a view of 1D array

1D Numpy array:

[22 1 2 3 4 5 6 7 8 9]

2D Numpy array:

[[22 1 2 3 4]

[5 6 7 8 9]]

Convert a 1D Numpy array to a 3D Numpy array using numpy.reshape()

1D Numpy array:

[1 2 3 4 5 6 7 8 9 10 11 12]

3D Numpy array:

[[[1 2 3]

[4 5 6]]

[[7 8 9]

[10 11 12]]]

*** Convert 1D Numpy array to 2D numpy array along the column ***

1D Numpy array:

[0 1 2 3 4 5 6 7 8 9]

2D Numpy array:

[[0 2 4 6 8]

[1 3 5 7 9]]

*** Convert 2D aray to 1D array as copy ***

1D Numpy array:

[0 1 2 3 4 5 6 7 8 9]

2D Numpy array:

[[0 1 2 3 4]

[5 6 7 8 9]]

1D Numpy array:

[0 1 2 3 4 5 6 7 8 9]

2D Numpy array:

[[22 1 2 3 4]

[5 6 7 8 9]]

UNIT 4

Linked Lists, Stacks, Queues

UNIT IV

Linked Lists – Implementation ofSingly Linked Lists, Doubly Linked Lists, Circular

Linked Lists.

Stacks - Overview of Stack, Implementation of Stack (List & Linked list),

Applications of Stack

Queues: Overview of Queue, Implementation of Queue(List & Linked list),

Applications of Queues, Priority Queues

Introduction:

Linked List:

 Linked lists are one of the most commonly used data structures in any

programming language.

 Linked List is a very commonly used linear data structure which consists of

group of nodes in a sequence.

 Each node holds its own data and the address of the next node hence forming a

chain like structure.

Linked Lists vs Arrays:

 A linked list is a dynamic data structure which means that the memory reserved

for the link list can be increased or reduced at runtime.

 No memory is allocated for a linked list data structure in advance.

 Whenever a new item is required to be added to the linked, the memory for

the new node is created at run time.

 On the other hand, in case of the array, memory has to be allocated in

advance for a specific number of items.

 In cases where sufficient items are not available to fill all array index,

memory space is wasted.

 Since arrays require contiguous memory locations, it is very difficult to remove

or insert an item in an array since the memory locations of a large number of

items have to be updated.

1. On the other hand, linked list items are not stored in a contiguous memory

location, therefore you can easily update linked lists.

2. Owing to its flexibility, a linked list is more suitable for implementing

data structures like stacks, queues, and lists.

There are different types of Linked lists.They are:

o Single Linked List

o Doubly Linked List

o Circular Linked List

Creation of Linked list

 A linked list is created by using the node class . We create a Node object and

create another class to use this code object. We pass the appropriate values thorugh

the node object to point the to the next data elements.

Code to create a node:

Traversing a Linked List

Singly linked lists can be traversed in only forwrad direction starting form the first

data element. We simply print the value of the next data element by assgining the

pointer of the next node to the current data element.

Code to traverse in a LinkedList:

Single Linked List

What is Linked List?

When we want to work with an unknown number of data values, we use a linked list

data structure to organize that data. The linked list is a linear data structure that

contains a sequence of elements such that each element links to its next element in the

sequence. Each element in a linked list is called "Node".

What is Single Linked List?

Simply a list is a sequence of data, and the linked list is a sequence of data linked with

each other.

The formal definition of a single linked list is as follows...

Single linked list is a sequence of elements in which every element has link to its

next element in the sequence.

In any single linked list, the individual element is called as "Node". Every "Node"

contains two fields, data field, and the next field. The data field is used to store actual

value of the node and next field is used to store the address of next node in the

sequence.

The graphical representation of a node in a single linked list is as follows...

Importent Points to be Remembered

 In a single linked list, the address of the first node is always stored in a reference

node known as "front" (Some times it is also known as "head").

 Always next part (reference part) of the last node must be NULL.

Example

Operations on Single Linked List

The following operations are performed on a Single Linked List

 Insertion

 Deletion

 Display

Before we implement actual operations, first we need to set up an empty list. First,

perform the following steps before implementing actual operations.

Step 1 - Include all the header files which are used in the program.

Step 2 - Declare all the user defined functions.

Step 3 - Define a Node structure with two members data and next

Step 4 - Define a Node pointer 'head' and set it to NULL.

Step 5 - Implement the main method by displaying operations menu and make

suitable function calls in the main method to perform user selected operation.

Insertion

In a single linked list, the insertion operation can be performed in three ways. They are

as follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the single linked

list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then,

 set newNode→next = NULL and head = newNode.

Step 4 - If it is Not Empty then,

set newNode→next = head and head = newNode.

Inserting At End of the list

We can use the following steps to insert a new node at end of the single linked list...

Step 1 - Create a newNode with given value and newNode → next as NULL.

Step 2 - Check whether list is Empty (head == NULL).

Step 3 - If it is Empty then, set head = newNode.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize

with head.

Step 5 - Keep moving the temp to its next node until it reaches to the last node in

the list (until temp → next is equal to NULL).

Step 6 - Set temp → next = newNode.

Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the single linked

list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, set newNode → next = NULL and head = newNode.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize

with head.

Step 5 - Keep moving the temp to its next node until it reaches to the node after

which we want to insert the newNode (until temp1 → data is equal to location,

here location is the node value after which we want to insert the newNode).

Step 6 - Every time check whether temp is reached to last node or not. If it is

reached to last node then display 'Given node is not found in the list!!! Insertion

not possible!!!' and terminate the function. Otherwise move the temp to next node.

Step 7 - Finally, Set 'newNode → next = temp → next' and 'temp →

next = newNode'

Deletion

In a single linked list, the deletion operation can be performed in three ways. They are

as follows...

1. Deleting from Beginning of the list

2. Deleting from End of the list

3. Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the single linked

list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize

with head.

Step 4 - Check whether list is having only one node (temp → next == NULL)

Step 5 - If it is TRUE then set head = NULL and delete temp (Setting Empty list

conditions)

Step 6 - If it is FALSE then set head = temp → next, and delete temp.

Deleting from End of the list

We can use the following steps to delete a node from end of the single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.

Step 4 - Check whether list has only one Node (temp1 → next == NULL)

Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate

the function. (Setting Empty list condition)

Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next

node. Repeat the same until it reaches to the last node in the list. (until temp1 →

next == NULL)

Step 7 - Finally, Set temp2 → next = NULL and delete temp1.

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.

Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or

to the last node. And every time set 'temp2 = temp1' before moving the 'temp1' to

its next node.

Step 5 - If it is reached to the last node then display 'Given node not found in the

list! Deletion not possible!!!'. And terminate the function.

Step 6 - If it is reached to the exact node which we want to delete, then check

whether list is having only one node or not

Step 7 - If list has only one node and that is the node to be deleted, then

set head = NULL and delete temp1 (free(temp1)).

Step 8 - If list contains multiple nodes, then check whether temp1 is the first node

in the list (temp1 == head).

Step 9 - If temp1 is the first node then move the head to the next node (head =

head → next) and delete temp1.

Step 10 - If temp1 is not first node then check whether it is last node in the list

(temp1 → next == NULL).

Step 11 - If temp1 is last node then set temp2 → next = NULL and

delete temp1 (free(temp1)).

Step 12 - If temp1 is not first node and not last node then set temp2 →

next = temp1 → next and delete temp1 (free(temp1)).

Displaying a Single Linked List

We can use the following steps to display the elements of a single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!!' and terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize

with head.

Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches to

the last node

Step 5 - Finally display temp → data with arrow pointing to NULL (temp → data

---> NULL).

Implementation of Single Linked List using Python Programming

Code:

 class Node:

 def __init__(self, data=None):

 self.data = data

 self.next = None

class SLinkedList:

 def __init__(self):

 self.head = None

 def Insert_At_Begin(self):

 Newnode=Node()

 value=int(input("Enter the value to be inserted:"))

 Newnode.data=value

 if self.head is None:

 self.head=Newnode

 Newnode.next=None

 else:

 Newnode.next=self.head

 self.head=Newnode

 print('Inserted Successfully')

 def Insert_At_Last(self):

 Newnode=Node()

 value=int(input("Enter the value to be inserted:"))

 Newnode.data=value

 if self.head is None:

 self.head=Newnode

 Newnode.next=None

 else:

 temp=self.head

 while temp.next is not None:

 temp=temp.next

 temp.next=Newnode

 Newnode.next=None

 print('Inserted Successfully')

 def Insert_At_Middle(self):

 Newnode=Node()

 value=int(input("Enter the value to be inserted:"))

 Newnode.data=value

 Pos=int(input("Enter the value after which u want to be inserted:"))

 if self.head is None:

 self.head=Newnode

 Newnode.next=None

 else:

 temp1=self.head

 temp2=None

 while temp1.data!=Pos:

 temp1=temp1.next

 temp2=temp1.next

 temp1.next=Newnode

 Newnode.next=temp2

 print('Inserted Successfully')

 def Remove_At_First(self):

 if self.head is None:

 print('List is Empty')

 else:

 temp=self.head

 self.head=temp.next

 print('Element is removed successfully')

 def Remove_At_Last(self):

 if self.head is None:

 print('List is Empty')

 else:

 temp1=self.head

 while temp1.next is not None:

 temp2=temp1

 temp1=temp1.next

 temp2.next=None

 print('Element is removed successfully')

 def Remove_At_Middle(self):

 if self.head is None:

 print('List is Empty')

 else:

 value=int(input('Enter the element to be deleted:'))

 temp1=self.head

 while temp1.data!=value :

 temp2=temp1

 temp1=temp1.next

 temp2.next = temp1.next;

 print('Element is removed successfully')

 def Search_List(self):

 Searchvalue=int(input('Enter the element to be Searched:'))

 temp1=self.head

 flag=0

 while(temp1 is not None):

 if(temp1.data==Searchvalue):

 flag=1

 temp1=temp1.next

 if(flag==1):

 print('Element is found')

 else:

 print('Element is not found')

 def Display(self):

 tempnode = self.head

 while tempnode.next!=None:

 # if tempnode is None:

 # break

 print(tempnode.data,end=" ")

 tempnode=tempnode.next

 print(tempnode.data,end=" ")

List=SLinkedList()

print("**********LikedList Operations***********")

while(1):

 print('''\n\t\t1.Insert_At_Begin()

 2.Insert_At_Last()

 3.Insert_At_Middle()

 4.Remove_At_First()

 5.Remove_At_Last()

 6.Remove_At_Middle()

 7.Seach()

 8.DiaplayList() ''')

 choice=int(input('Enter the choice :'))

 if(choice==1):

 List.Insert_At_Begin()

 elif(choice==2):

 List.Insert_At_Last()

 elif(choice==3):

 List.Insert_At_Middle()

 elif(choice==4):

 List.Remove_At_First()

 elif(choice==5):

 List.Remove_At_Last()

 elif(choice==6):

 List.Remove_At_Middle()

 elif(choice==7):

 List.Search_List()

 elif (choice==8):

 List.Display()

Double Linked List

What is Double Linked List?

In a single linked list, every node has a link to its next node in the sequence. So, we

can traverse from one node to another node only in one direction and we can not

traverse back. We can solve this kind of problem by using a double linked list. A

double linked list can be defined as follows...

Double linked list is a sequence of elements in which every element has links to its

previous element and next element in the sequence.

In a double linked list, every node has a link to its previous node and next node. So, we

can traverse forward by using the next field and can traverse backward by using the

previous field. Every node in a double linked list contains three fields and they are

shown in the following figure...

Here, 'link1' field is used to store the address of the previous node in the

sequence, 'link2' field is used to store the address of the next node in the sequence

and 'data' field is used to store the actual value of that node.

Example

 Importent Points to be Remembered

 In double linked list, the first node must be always pointed by head.

 Always the previous field of the first node must be NULL.

 Always the next field of the last node must be NULL.

Operations on Double Linked List

In a double linked list, we perform the following operations...

1. Insertion

2. Deletion

3. Display

Insertion

In a double linked list, the insertion operation can be performed in three ways as

follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the double linked

list...

 Step 1 - Create a newNode with given value and newNode →

previous as NULL.

 Step 2 - Check whether list is Empty (head == NULL)

 Step 3 - If it is Empty then, assign NULL to newNode →

next and newNode to head.

 Step 4 - If it is not Empty then, assign head to newNode →

next and newNode to head.

Inserting At End of the list

We can use the following steps to insert a new node at end of the double linked list...

 Step 1 - Create a newNode with given value and newNode → next as NULL.

 Step 2 - Check whether list is Empty (head == NULL)

 Step 3 - If it is Empty, then assign NULL to newNode →

previous and newNode to head.

 Step 4 - If it is not Empty, then, define a node pointer temp and initialize

with head.

 Step 5 - Keep moving the temp to its next node until it reaches to the last node

in the list (until temp → next is equal to NULL).

 Step 6 - Assign newNode to temp → next and temp to newNode → previous.

Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the double linked

list...

 Step 1 - Create a newNode with given value.

 Step 2 - Check whether list is Empty (head == NULL)

 Step 3 - If it is Empty then, assign NULL to both newNode →

previous & newNode → next and set newNode to head.

 Step 4 - If it is not Empty then, define two node pointers temp1 & temp2 and

initialize temp1 with head.

 Step 5 - Keep moving the temp1 to its next node until it reaches to the node

after which we want to insert the newNode (until temp1 → data is equal

to location, here location is the node value after which we want to insert the

newNode).

 Step 6 - Every time check whether temp1 is reached to the last node. If it is

reached to the last node then display 'Given node is not found in the list!!!

Insertion not possible!!!' and terminate the function. Otherwise move

the temp1 to next node.

 Step 7 - Assign temp1 → next to temp2, newNode to temp1 →

next, temp1 to newNode → previous, temp2 to newNode →

next and newNode to temp2 → previous.

Deletion

In a double linked list, the deletion operation can be performed in three ways as

follows...

1. Deleting from Beginning of the list

2. Deleting from End of the list

3. Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the double linked

list...

 Step 1 - Check whether list is Empty (head == NULL)

 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not

possible' and terminate the function.

 Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize

with head.

 Step 4 - Check whether list is having only one node (temp → previous is equal

to temp → next)

 Step 5 - If it is TRUE, then set head to NULL and

delete temp (Setting Empty list conditions)

 Step 6 - If it is FALSE, then assign temp → next to head, NULL to head →

previous and delete temp.

Deleting from End of the list

We can use the following steps to delete a node from end of the double linked list...

 Step 1 - Check whether list is Empty (head == NULL)

 Step 2 - If it is Empty, then display 'List is Empty!!! Deletion is not

possible' and terminate the function.

 Step 3 - If it is not Empty then, define a Node pointer 'temp' and initialize

with head.

 Step 4 - Check whether list has only one Node (temp → previous and temp →

next both are NULL)

 Step 5 - If it is TRUE, then assign NULL to head and delete temp. And

terminate from the function. (Setting Empty list condition)

 Step 6 - If it is FALSE, then keep moving temp until it reaches to the last node

in the list. (until temp → next is equal to NULL)

 Step 7 - Assign NULL to temp → previous → next and delete temp.

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the double linked list...

 Step 1 - Check whether list is Empty (head == NULL)

 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not

possible' and terminate the function.

 Step 3 - If it is not Empty, then define a Node pointer 'temp' and initialize

with head.

 Step 4 - Keep moving the temp until it reaches to the exact node to be deleted or

to the last node.

 Step 5 - If it is reached to the last node, then display 'Given node not found in

the list! Deletion not possible!!!' and terminate the fuction.

 Step 6 - If it is reached to the exact node which we want to delete, then check

whether list is having only one node or not

 Step 7 - If list has only one node and that is the node which is to be deleted then

set head to NULL and delete temp (free(temp)).

 Step 8 - If list contains multiple nodes, then check whether temp is the first

node in the list (temp == head).

 Step 9 - If temp is the first node, then move the head to the next node (head =

head → next), set head of previous to NULL (head → previous = NULL) and

delete temp.

 Step 10 - If temp is not the first node, then check whether it is the last node in

the list (temp → next == NULL).

 Step 11 - If temp is the last node then

set temp of previous of next to NULL (temp → previous → next = NULL)

and delete temp (free(temp)).

 Step 12 - If temp is not the first node and not the last node, then

set temp of previous of next to temp of next (temp → previous → next =

temp → next), temp of next of previous to temp of previous (temp → next →

previous = temp → previous) and delete temp (free(temp)).

Displaying a Double Linked List

We can use the following steps to display the elements of a double linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty, then display 'List is Empty!!!' and terminate the function.

Step 3 - If it is not Empty, then define a Node pointer 'temp' and initialize

with head.

Step 4 - Display 'NULL <--- '.

Step 5 - Keep displaying temp → data with an arrow (<===>) until temp reaches

to the last node

Step 6 - Finally, display temp → data with arrow pointing to NULL (temp →

data ---> NULL).

Implementation of Double Linked List using Python Programming

Code:

class Node:

 # Constructor to create a new node

 def __init__(self):

 self.data = None

 self.next = None

 self.prev = None

Class to create a Doubly Linked List

class DLinkedList:

 # Constructor for empty Doubly Linked List

 def __init__(self):

 self.head = None

 def Insert_At_Begin(self):

 Newnode=Node()

 value=int(input("Enter the value to be inserted:"))

 Newnode.data=value

 if self.head is None:

 self.head=Newnode

 Newnode.next=None

 Newnode.prev=None

 else:

 Newnode.next=self.head

 self.head=Newnode

 Newnode.prev=None

 print('Inserted Successfully')

 def Insert_At_Last(self):

 Newnode=Node()

 value=int(input("Enter the value to be inserted:"))

 Newnode.data=value

 if self.head is None:

 self.head=Newnode

 Newnode.next=None

 Newnode.prev=None

 else:

 temp=self.head

 while temp.next is not None:

 temp=temp.next

 temp.next=Newnode

 Newnode.prev=temp

 Newnode.next=None

 print('Inserted Successfully')

 def Insert_At_Middle(self):

 Newnode=Node()

 value=int(input("Enter the value to be inserted:"))

 Newnode.data=value

 Pos=int(input("Enter the value after which u want to be inserted:"))

 if self.head is None:

 self.head=Newnode

 Newnode.next=None

 Newnode.prev=None

 else:

 temp1=self.head

 temp2=None

 while temp1.data!=Pos:

 temp1=temp1.next

 temp2=temp1.next

 temp1.next=Newnode

 Newnode.next=temp2

 Newnode.prev=temp1

 temp2.prev=Newnode

 print('Inserted Successfully')

 def Remove_At_First(self):

 if self.head is None:

 print('List is Empty')

 else:

 temp=self.head

 self.head=temp.next

 temp=temp.next

 temp.prev=None

 print('Element is removed successfully')

 def Remove_At_Last(self):

 if self.head is None:

 print('List is Empty')

 else:

 temp1=self.head

 while temp1.next is not None:

 temp2=temp1

 temp1=temp1.next

 temp2.next=None

 print('Element is removed successfully')

 def Remove_At_Middle(self):

 if self.head is None:

 print('List is Empty')

 else:

 value=int(input('Enter the element to be deleted:'))

 temp1=self.head

 temp2=None

 temp3=None

 while temp1.data!=value :

 temp2=temp1

 temp1=temp1.next

 temp3=temp1.next

 temp2.next = temp1.next;

 temp3.prev=temp2.next

 print('Element is removed successfully')

 def Search_List(self):

 Searchvalue=int(input('Enter the element to be Searched:'))

 temp1=self.head

 flag=0

 while(temp1 is not None):

 if(temp1.data==Searchvalue):

 flag=1

 temp1=temp1.next

 if(flag==1):

 print('Element is found')

 else:

 print('Element is not found')

 def Display(self):

 tempnode = self.head

 while tempnode.next!=None:

 # if tempnode is None:

 # break

 print(tempnode.data,end=" ")

 tempnode=tempnode.next

 print(tempnode.data,end=" ")

List=DLinkedList()

print("**********Doubly LikedList Operations***********")

while(1):

 print('''\n\t\t1.Insert_At_Begin()

 2.Insert_At_Last()

 3.Insert_At_Middle()

 4.Remove_At_First()

 5.Remove_At_Last()

 6.Remove_At_Middle()

 7.Seach()

 8.DiaplayList() ''')

 choice=int(input('Enter the choice :'))

 if(choice==1):

 List.Insert_At_Begin()

 elif(choice==2):

 List.Insert_At_Last()

 elif(choice==3):

 List.Insert_At_Middle()

 elif(choice==4):

 List.Remove_At_First()

 elif(choice==5):

 List.Remove_At_Last()

 elif(choice==6):

 List.Remove_At_Middle()

 elif(choice==7):

 List.Search_List()

 elif (choice==8):

 List.Display()

Circular Linked List

What is Circular Linked List?

In single linked list, every node points to its next node in the sequence and the last

node points NULL. But in circular linked list, every node points to its next node in the

sequence but the last node points to the first node in the list.

A circular linked list is a sequence of elements in which every element has a link

to its next element in the sequence and the last element has a link to the first

element.

That means circular linked list is similar to the single linked list except that the last

node points to the first node in the list

Example

Operations

In a circular linked list, we perform the following operations...

1. Insertion

2. Deletion

3. Display

Before we implement actual operations, first we need to setup empty list. First perform

the following steps before implementing actual operations.

 Step 1 - Include all the header files which are used in the program.

 Step 2 - Declare all the user defined functions.

 Step 3 - Define a Node structure with two members data and next

 Step 4 - Define a Node pointer 'head' and set it to NULL.

 Step 5 - Implement the main method by displaying operations menu and make

suitable function calls in the main method to perform user selected operation.

Insertion

In a circular linked list, the insertion operation can be performed in three ways. They

are as follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the circular linked

list...

 Step 1 - Create a newNode with given value.

 Step 2 - Check whether list is Empty (head == NULL)

 Step 3 - If it is Empty then, set head = newNode and newNode→next = head .

 Step 4 - If it is Not Empty then, define a Node pointer 'temp' and initialize with

'head'.

 Step 5 - Keep moving the 'temp' to its next node until it reaches to the last node

(until 'temp → next == head').

 Step 6 - Set 'newNode → next =head', 'head = newNode' and 'temp →

next = head'.

Inserting At End of the list

We can use the following steps to insert a new node at end of the circular linked list...

 Step 1 - Create a newNode with given value.

 Step 2 - Check whether list is Empty (head == NULL).

 Step 3 - If it is Empty then, set head = newNode and newNode →

next = head.

 Step 4 - If it is Not Empty then, define a node pointer temp and initialize

with head.

 Step 5 - Keep moving the temp to its next node until it reaches to the last node

in the list (until temp → next == head).

 Step 6 - Set temp → next = newNode and newNode → next = head.

Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the circular linked

list...

 Step 1 - Create a newNode with given value.

 Step 2 - Check whether list is Empty (head == NULL)

 Step 3 - If it is Empty then, set head = newNode and newNode →

next = head.

 Step 4 - If it is Not Empty then, define a node pointer temp and initialize

with head.

 Step 5 - Keep moving the temp to its next node until it reaches to the node after

which we want to insert the newNode (until temp1 → data is equal to location,

here location is the node value after which we want to insert the newNode).

 Step 6 - Every time check whether temp is reached to the last node or not. If it is

reached to last node then display 'Given node is not found in the list!!!

Insertion not possible!!!' and terminate the function. Otherwise move

the temp to next node.

 Step 7 - If temp is reached to the exact node after which we want to insert the

newNode then check whether it is last node (temp → next == head).

 Step 8 - If temp is last node then set temp → next = newNode and newNode

→ next = head.

 Step 8 - If temp is not last node then set newNode → next = temp →

next and temp → next = newNode.

Deletion

In a circular linked list, the deletion operation can be performed in three ways those are

as follows...

1. Deleting from Beginning of the list

2. Deleting from End of the list

3. Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the circular linked

list...

 Step 1 - Check whether list is Empty (head == NULL)

 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not

possible' and terminate the function.

 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2'

and initialize both 'temp1' and 'temp2' with head.

 Step 4 - Check whether list is having only one node (temp1 → next == head)

 Step 5 - If it is TRUE then set head = NULL and

delete temp1 (Setting Empty list conditions)

 Step 6 - If it is FALSE move the temp1 until it reaches to the last node.

(until temp1 → next == head)

 Step 7 - Then set head = temp2 → next, temp1 → next = head and

delete temp2.

Deleting from End of the list

We can use the following steps to delete a node from end of the circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)

 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not

possible' and terminate the function.

 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and

'temp2' and initialize 'temp1' with head.

 Step 4 - Check whether list has only one Node (temp1 → next == head)

 Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And

terminate from the function. (Setting Empty list condition)

 Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next

node. Repeat the same until temp1 reaches to the last node in the list.

(until temp1 → next == head)

 Step 7 - Set temp2 → next = head and delete temp1.

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the circular linked list...

 Step 1 - Check whether list is Empty (head == NULL)

 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not

possible' and terminate the function.

 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2'

and initialize 'temp1' with head.

 Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted

or to the last node. And every time set 'temp2 = temp1' before moving the

'temp1' to its next node.

 Step 5 - If it is reached to the last node then display 'Given node not found in

the list! Deletion not possible!!!'. And terminate the function.

 Step 6 - If it is reached to the exact node which we want to delete, then check

whether list is having only one node (temp1 → next == head)

 Step 7 - If list has only one node and that is the node to be deleted then

set head = NULL and delete temp1 (free(temp1)).

 Step 8 - If list contains multiple nodes then check whether temp1 is the first

node in the list (temp1 == head).

 Step 9 - If temp1 is the first node then set temp2 = head and keep

moving temp2 to its next node until temp2 reaches to the last node. Then

set head = head → next, temp2 → next = head and delete temp1.

 Step 10 - If temp1 is not first node then check whether it is last node in the list

(temp1 → next == head).

 Step 1 1- If temp1 is last node then set temp2 → next = head and

delete temp1 (free(temp1)).

 Step 12 - If temp1 is not first node and not last node then set temp2 →

next = temp1 → next and delete temp1 (free(temp1)).

Displaying a circular Linked List

We can use the following steps to display the elements of a circular linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty, then display 'List is Empty!!!' and terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize

with head.

Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches to

the last node

Step 5 - Finally display temp → data with arrow pointing to head → data.

Implementation of Circular Linked List using Python Programming

 class Node:

 # Constructor to create a new node

 def __init__(self):

 self.data = None

 self.next = None

Class to create a Doubly Linked List

class CLinkedList:

 # Constructor for empty Doubly Linked List

 def __init__(self):

 self.head = None

 def Insert_At_Begin(self):

 Newnode=Node()

 value=int(input("Enter the value to be inserted:"))

 Newnode.data=value

 if self.head is None:

 self.head=Newnode

 Newnode.next=self.head

 else:

 temp=self.head

 while(temp.next!=self.head):

 temp=temp.next

 Newnode.next=self.head

 self.head=Newnode

 temp.next=self.head

 print('Inserted Successfully')

 def Insert_At_Last(self):

 Newnode=Node()

 value=int(input("Enter the value to be inserted:"))

 Newnode.data=value

 if self.head is None:

 self.head=Newnode

 Newnode.next=self.head

 else:

 temp=self.head

 while(temp.next !=self.head):

 temp=temp.next

 temp.next=Newnode

 Newnode.next=self.head

 print('Inserted Successfully')

 def Insert_At_Middle(self):

 Newnode=Node()

 value=int(input("Enter the value to be inserted:"))

 Newnode.data=value

 Pos=int(input("Enter the value after which u want to be inserted:"))

 if self.head is None:

 self.head=Newnode

 Newnode.next=self.head

 else:

 temp1=self.head

 temp2=None

 while temp1.data!=Pos:

 temp1=temp1.next

 Newnode.next=temp1.next

 temp1.next=Newnode

 print('Inserted Successfully')

 def Remove_At_First(self):

 if self.head is None:

 print('List is Empty')

 else:

 temp1=self.head

 if temp1.next==self.head:

 self.head=None

 else:

 temp2=temp1

 while temp1.next!=self.head:

 temp1=temp1.next

 self.head=temp2.next

 temp1.next=self.head

 print('Element is removed successfully')

 def Remove_At_Last(self):

 if self.head is None:

 print('List is Empty')

 else:

 temp=self.head

 if temp.next==self.head:

 self.head=None

 else:

 temp1=self.head

 while temp1.next!=self.head:

 temp2=temp1

 temp1=temp1.next

 temp2.next=self.head

 print('Element is removed successfully')

 def Remove_At_Middle(self):

 if self.head is None:

 print('List is Empty')

 else:

 temp=self.head

 if temp.next==self.head:

 self.head=None

 else:

 value=int(input('Enter the element to be deleted:'))

 temp1=self.head

 temp2=None

 while temp1.data!=value :

 temp2=temp1

 temp1=temp1.next

 temp2.next = temp1.next;

 print('Element is removed successfully')

 def Search_List(self):

 Searchvalue=int(input('Enter the element to be Searched:'))

 temp1=self.head

 flag=0

 while(temp1.next!=self.head):

 if(temp1.data==Searchvalue):

 flag=1

 temp1=temp1.next

 if(flag==1):

 print('Element is found')

 else:

 print('Element is not found')

 def Display(self):

 tempnode = self.head

 while tempnode.next!=self.head:

 print(tempnode.data,end=" ")

 tempnode=tempnode.next

 print(tempnode.data,end=" ")

List=CLinkedList()

print("**********Circular LikedList Operations***********")

while(1):

 print('''\n\t\t1.Insert_At_Begin()

 2.Insert_At_Last()

 3.Insert_At_Middle()

 4.Remove_At_First()

 5.Remove_At_Last()

 6.Remove_At_Middle()

 7.Seach()

 8.DiaplayList() ''')

 choice=int(input('Enter the choice :'))

 if(choice==1):

 List.Insert_At_Begin()

 elif(choice==2):

 List.Insert_At_Last()

 elif(choice==3):

 List.Insert_At_Middle()

 elif(choice==4):

 List.Remove_At_First()

 elif(choice==5):

 List.Remove_At_Last()

 elif(choice==6):

 List.Remove_At_Middle()

 elif(choice==7):

 List.Search_List()

 elif (choice==8):

 List.Display()

Applications of Stack in Data Structure:

o Evaluation of Arithmetic Expressions

o Backtracking

o Delimiter Checking

o Reverse a Data

o Processing Function Calls

1. Evaluation of Arithmetic Expressions

A stack is a very effective data structure for evaluating arithmetic expressions in

programming languages. An arithmetic expression consists of operands and

operators.

In addition to operands and operators, the arithmetic expression may also

include parenthesis like "left parenthesis" and "right parenthesis".

Example: A + (B - C)

To evaluate the expressions, one needs to be aware of the standard

precedence rules for arithmetic expression. The precedence rules for the five

basic arithmetic operators are:

Operators Associativity Precedence

^ exponentiation Right to left Highest followed by

*Multiplication and /division

*Multiplication,

/division

Left to right Highest followed by + addition

and - subtraction

+ addition, -

subtraction

Left to right lowest

Evaluation of Arithmetic Expression requires two steps:

o First, convert the given expression into special notation.

o Evaluate the expression in this new notation.

Notations for Arithmetic Expression

There are three notations to represent an arithmetic expression:

o Infix Notation

https://www.javatpoint.com/data-structure-tutorial

o Prefix Notation

o Postfix Notation

Infix Notation

The infix notation is a convenient way of writing an expression in which each

operator is placed between the operands. Infix expressions can be

parenthesized or unparenthesized depending upon the problem requirement.

Example: A + B, (C - D) etc.

All these expressions are in infix notation because the operator comes between

the operands.

Prefix Notation

The prefix notation places the operator before the operands. This notation was

introduced by the Polish mathematician and hence often referred to as polish

notation.

Example: + A B, -CD etc.

All these expressions are in prefix notation because the operator comes before

the operands.

Postfix Notation

The postfix notation places the operator after the operands. This notation is

just the reverse of Polish notation and also known as Reverse Polish notation.

Example: AB +, CD+, etc.

All these expressions are in postfix notation because the operator comes after

the operands.

Conversion of Arithmetic Expression into various Notations:

Infix Notation Prefix Notation Postfix Notation

A * B * A B AB*

(A+B)/C /+ ABC AB+C/

(A*B) + (D-C) +*AB - DC AB*DC-+

Let's take the example of Converting an infix expression into a postfix

expression.

In the above example, the only change from the postfix expression is that the

operator is placed before the operands rather than between the operands.

Evaluating Postfix expression:

Stack is the ideal data structure to evaluate the postfix expression because the

top element is always the most recent operand. The next element on the Stack

is the second most recent operand to be operated on.

Before evaluating the postfix expression, the following conditions must be

checked. If any one of the conditions fails, the postfix expression is invalid.

o When an operator encounters the scanning process, the Stack must

contain a pair of operands or intermediate results previously calculated.

o When an expression has been completely evaluated, the Stack must

contain exactly one value.

Example:

Now let us consider the following infix expression 2 * (4+3) - 5.

Its equivalent postfix expression is 2 4 3 + * 5.

The following step illustrates how this postfix expression is evaluated.

2. Backtracking

Backtracking is another application of Stack. It is a recursive algorithm that is

used for solving the optimization problem.

3. Delimiter Checking

The common application of Stack is delimiter checking, i.e., parsing that

involves analyzing a source program syntactically. It is also called parenthesis

checking. When the compiler translates a source program written in some

programming language such as C, C++ to a machine language, it parses the

program into multiple individual parts such as variable names, keywords, etc.

By scanning from left to right. The main problem encountered while translating

is the unmatched delimiters. We make use of different types of delimiters

include the parenthesis checking (,), curly braces {,} and square brackets [,], and

common delimiters /* and */. Every opening delimiter must match a closing

delimiter, i.e., every opening parenthesis should be followed by a matching

closing parenthesis. Also, the delimiter can be nested. The opening delimiter

that occurs later in the source program should be closed before those

occurring earlier.

Valid Delimiter Invalid Delimiter

While (i > 0) While (i >

/* Data Structure */ /* Data Structure

{ (a + b) - c } { (a + b) - c

To perform a delimiter checking, the compiler makes use of a stack. When a

compiler translates a source program, it reads the characters one at a time, and

if it finds an opening delimiter it places it on a stack. When a closing delimiter

is found, it pops up the opening delimiter from the top of the Stack and

matches it with the closing delimiter.

On matching, the following cases may arise.

o If the delimiters are of the same type, then the match is considered

successful, and the process continues.

o If the delimiters are not of the same type, then the syntax error is

reported.

When the end of the program is reached, and the Stack is empty, then the

processing of the source program stops.

Example: To explain this concept, let's consider the following expression.

[{a -b) * (c -d)}/f]

4. Reverse a Data:

To reverse a given set of data, we need to reorder the data so that the first and

last elements are exchanged, the second and second last element are

exchanged, and so on for all other elements.

Example: Suppose we have a string Welcome, then on reversing it would be

Emoclew.

There are different reversing applications:

o Reversing a string

o Converting Decimal to Binary

Reverse a String

A Stack can be used to reverse the characters of a string. This can be achieved

by simply pushing one by one each character onto the Stack, which later can

be popped from the Stack one by one. Because of the last in first out property

of the Stack, the first character of the Stack is on the bottom of the Stack and

the last character of the String is on the Top of the Stack and after performing

the pop operation in the Stack, the Stack returns the String in Reverse order.

Converting Decimal to Binary:

Although decimal numbers are used in most business applications, some

scientific and technical applications require numbers in either binary, octal, or

hexadecimal. A stack can be used to convert a number from decimal to

binary/octal/hexadecimal form. For converting any decimal number to a binary

number, we repeatedly divide the decimal number by two and push the

remainder of each division onto the Stack until the number is reduced to 0.

Then we pop the whole Stack and the result obtained is the binary equivalent

of the given decimal number.

Example: Converting 14 number Decimal to Binary:

In the above example, on dividing 14 by 2, we get seven as a quotient and one

as the reminder, which is pushed on the Stack. On again dividing seven by 2,

we get three as quotient and 1 as the reminder, which is again pushed onto the

Stack. This process continues until the given number is not reduced to 0. When

we pop off the Stack completely, we get the equivalent binary number 1110.

5. Processing Function Calls:

Stack plays an important role in programs that call several functions in

succession. Suppose we have a program containing three functions: A, B, and

C. function A invokes function B, which invokes the function C.

When we invoke function A, which contains a call to function B, then its

processing will not be completed until function B has completed its execution

and returned. Similarly for function B and C. So we observe that function A will

only be completed after function B is completed and function B will only be

completed after function C is completed. Therefore, function A is first to be

started and last to be completed. To conclude, the above function activity

matches the last in first out behavior and can easily be handled using Stack.

Consider addrA, addrB, addrC be the addresses of the statements to which

control is returned after completing the function A, B, and C, respectively.

The above figure shows that return addresses appear in the Stack in the reverse

order in which the functions were called. After each function is completed, the

pop operation is performed, and execution continues at the address removed

from the Stack. Thus the program that calls several functions in succession can

be handled optimally by the stack data structure. Control returns to each

function at a correct place, which is the reverse order of the calling sequence.

Queues Applications: Simulation, Scheduling, Shared Resource

Management, Keyboard Buffer, Breadth-First Search, To handle

congestion in the network etc.

Priority Queue

In the normal queue data structure, insertion is performed at the end of the queue and

deletion is performed based on the FIFO principle. This queue implementation may not

be suitable for all applications.

Consider a networking application where the server has to respond for requests from

multiple clients using queue data structure. Assume four requests arrived at the queue

in the order of R1, R2, R3 & R4 where R1 requires 20 units of time, R2 requires 2

units of time, R3 requires 10 units of time and R4 requires 5 units of time. A queue is

as follows...

Now, check to wait time of each request that to be completed.

1. R1 : 20 units of time

2. R2 : 22 units of time (R2 must wait until R1 completes 20 units and R2 itself

requires 2 units. Total 22 units)

3. R3 : 32 units of time (R3 must wait until R2 completes 22 units and R3 itself

requires 10 units. Total 32 units)

4. R4 : 37 units of time (R4 must wait until R3 completes 35 units and R4 itself

requires 5 units. Total 37 units)

Here, the average waiting time for all requests (R1, R2, R3 and R4) is

(20+22+32+37)/4 ≈ 27 units of time.

That means, if we use a normal queue data structure to serve these requests the average

waiting time for each request is 27 units of time.

Now, consider another way of serving these requests. If we serve according to their

required amount of time, first we serve R2 which has minimum time (2 units)

requirement. Then serve R4 which has second minimum time (5 units) requirement and

then serve R3 which has third minimum time (10 units) requirement and finally R1 is

served which has maximum time (20 units) requirement.

Now, check to wait time of each request that to be completed.

1. R2 : 2 units of time

2. R4 : 7 units of time (R4 must wait until R2 completes 2 units and R4 itself

requires 5 units. Total 7 units)

3. R3 : 17 units of time (R3 must wait until R4 completes 7 units and R3 itself

requires 10 units. Total 17 units)

4. R1 : 37 units of time (R1 must wait until R3 completes 17 units and R1 itself

requires 20 units. Total 37 units)

Here, the average waiting time for all requests (R1, R2, R3 and R4) is

(2+7+17+37)/4 ≈ 15 units of time.

From the above two situations, it is very clear that the second method server can

complete all four requests with very less time compared to the first method. This is

what exactly done by the priority queue.

Priority queue is a variant of a queue data structure in which insertion is

performed in the order of arrival and deletion is performed based on the priority.

There are two types of priority queues they are as follows...

1. Max Priority Queue

2. Min Priority Queue

1. Max Priority Queue

In a max priority queue, elements are inserted in the order in which they arrive the

queue and the maximum value is always removed first from the queue. For example,

assume that we insert in the order 8, 3, 2 & 5 and they are removed in the order 8, 5, 3,

2.

The following are the operations performed in a Max priority queue...

1. isEmpty() - Check whether queue is Empty.

2. insert() - Inserts a new value into the queue.

3. findMax() - Find maximum value in the queue.

4. remove() - Delete maximum value from the queue.

Max Priority Queue Representations

There are 6 representations of max priority queue.

1. Using an Unordered Array (Dynamic Array)

2. Using an Unordered Array (Dynamic Array) with the index of the

maximum value

3. Using an Array (Dynamic Array) in Decreasing Order

4. Using an Array (Dynamic Array) in Increasing Order

5. Using Linked List in Increasing Order

6. Using Unordered Linked List with reference to node with the maximum

value

#1. Using an Unordered Array (Dynamic Array)

In this representation, elements are inserted according to their arrival order and the

largest element is deleted first from the max priority queue.

For example, assume that elements are inserted in the order of 8, 2, 3 and 5. And they

are removed in the order 8, 5, 3 and 2.

Now, let us analyze each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time

complexity which means constant time complexity.

insert() - New element is added at the end of the queue. This operation

requires O(1) time complexity which means constant time complexity.

findMax() - To find the maximum element in the queue, we need to compare it with

all the elements in the queue. This operation requires O(n) time complexity.

remove() - To remove an element from the max priority queue, first we need to find

the largest element using findMax() which requires O(n) time complexity, then that

element is deleted with constant time complexity O(1). The remove() operation

requires O(n) + O(1) ≈ O(n) time complexity.

#2. Using an Unordered Array (Dynamic Array) with the index of the maximum

value

In this representation, elements are inserted according to their arrival order and the

largest element is deleted first from max priority queue.

For example, assume that elements are inserted in the order of 8, 2, 3 and 5. And they

are removed in the order 8, 5, 3 and 2.

Now, let us analyze each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time

complexity which means constant time complexity.

insert() - New element is added at the end of the queue with O(1) time complexity and

for each insertion we need to update maxIndex with O(1) time complexity. This

operation requires O(1) time complexity which means constant time complexity.

findMax() - Finding the maximum element in the queue is very simple because index

of the maximum element is stored in maxIndex. This operation requires O(1) time

complexity.

remove() - To remove an element from the queue, first we need to find the largest

element using findMax() which requires O(1) time complexity, then that element is

deleted with constant time complexity O(1) and finally we need to update the next

largest element index value in maxIndex which requires O(n) time complexity. The

remove() operation requires O(1)+O(1)+O(n) ≈ O(n) time complexity.

#3. Using an Array (Dynamic Array) in Decreasing Order

In this representation, elements are inserted according to their value in decreasing order

and largest element is deleted first from max priority queue.

For example, assume that elements are inserted in the order of 8, 5, 3 and 2. And they

are removed in the order 8, 5, 3 and 2.

Now, let us analyze each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time

complexity which means constant time complexity.

insert() - New element is added at a particular position based on the decreasing order

of elements which requires O(n) time complexity as it needs to shift existing elements

inorder to insert new element in decreasing order. This insert() operation

requires O(n) time complexity.

findMax() - Finding the maximum element in the queue is very simple because

maximum element is at the beginning of the queue. This findMax() operation

requires O(1) time complexity.

remove() - To remove an element from the max priority queue, first we need to find

the largest element using findMax() operation which requires O(1) time complexity,

then that element is deleted with constant time complexity O(1) and finally we need to

rearrange the remaining elements in the list which requires O(n) time complexity. This

remove() operation requires O(1) + O(1) + O(n) ≈ O(n) time complexity.

#4. Using an Array (Dynamic Array) in Increasing Order

In this representation, elements are inserted according to their value in increasing order

and maximum element is deleted first from max priority queue.

For example, assume that elements are inserted in the order of 2, 3, 5 and 8. And they

are removed in the order 8, 5, 3 and 2.

Now, let us analyze each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time

complexity which means constant time complexity.

insert() - New element is added at a particular position in the increasing order of

elements into the queue which requires O(n) time complexity as it needs to shift

existing elements to maintain increasing order of elements. This insert() operation

requires O(n) time complexity.

findMax() - Finding the maximum element in the queue is very simple becuase

maximum element is at the end of the queue. This findMax() operation

requires O(1) time complexity.

remove() - To remove an element from the queue first we need to find the largest

element using findMax() which requires O(1) time complexity, then that element is

deleted with constant time complexity O(1). Finally, we need to rearrange the

remaining elements to maintain increasing order of elements which requires O(n) time

complexity. This remove() operation requires O(1) + O(1) + O(n) ≈ O(n) time

complexity.

#5. Using Linked List in Increasing Order

In this representation, we use a single linked list to represent max priority queue. In

this representation, elements are inserted according to their value in increasing order

and a node with the maximum value is deleted first from the max priority queue.

For example, assume that elements are inserted in the order of 2, 3, 5 and 8. And they

are removed in the order of 8, 5, 3 and 2.

Now, let us analyze each operation according to this representation...

isEmpty() - If 'head == NULL' queue is Empty. This operation requires O(1) time

complexity which means constant time complexity.

insert() - New element is added at a particular position in the increasing order of

elements which requires O(n) time complexity. This insert() operation

requires O(n) time complexity.

findMax() - Finding the maximum element in the queue is very simple because

maximum element is at the end of the queue. This findMax() operation

requires O(1) time complexity.

remove() - Removing an element from the queue is simple because the largest element

is last node in the queue. This remove() operation requires O(1) time complexity.

#6. Using Unordered Linked List with reference to node with the maximum value

In this representation, we use a single linked list to represent max priority queue. We

always maintain a reference (maxValue) to the node with the maximum value in the

queue. In this representation, elements are inserted according to their arrival and the

node with the maximum value is deleted first from the max priority queue.

For example, assume that elements are inserted in the order of 2, 8, 3 and 5. And they

are removed in the order of 8, 5, 3 and 2.

Now, let us analyze each operation according to this representation...

isEmpty() - If 'head == NULL' queue is Empty. This operation requires O(1) time

complexity which means constant time complexity.

insert() - New element is added at end of the queue which requires O(1) time

complexity. And we need to update maxValue reference with address of largest

element in the queue which requires O(1) time complexity. This insert() operation

requires O(1) time complexity.

findMax() - Finding the maximum element in the queue is very simple because the

address of largest element is stored at maxValue. This findMax() operation

requires O(1) time complexity.

remove() - Removing an element from the queue is deleting the node which is

referenced by maxValue which requires O(1) time complexity. And then we need to

update maxValue reference to new node with maximum value in the queue which

requires O(n) time complexity. This remove() operation requires O(n) time

complexity.

2. Min Priority Queue Representations

Min Priority Queue is similar to max priority queue except for the removal of

maximum element first. We remove minimum element first in the min-priority queue.

The following operations are performed in Min Priority Queue...

1. isEmpty() - Check whether queue is Empty.

2. insert() - Inserts a new value into the queue.

3. findMin() - Find minimum value in the queue.

4. remove() - Delete minimum value from the queue.

UNIT 5

Graphs ,Trees

UNIT-V
Graphs -Introduction, Directed vs Undirected Graphs, Weighted vs Unweighted

Graphs, Representations, Breadth First Search, Depth First Search.

Trees - Overview of Trees, Tree Terminology, Binary Trees: Introduction,

Implementation, Applications. Tree Traversals, Binary Search Trees: Introduction,

Implementation, AVL Trees: Introduction, Rotations, Implementation.

Graphs

Graphs in data structures are non-linear data structures made up of a finite number of

nodes or vertices and the edges that connect them.

Graphs in data structures are used to address real-world problems in which it

represents the problem area as a network like telephone networks, circuit networks,

and social networks. For example, it can represent a single user as nodes or vertices

in a telephone network, while the link between them via telephone represents edges.

Graphs in Data Structure

A graph is a non-linear kind of data structure made up of nodes or vertices and

edges. The edges connect any two nodes in the graph, and the nodes are also known

as vertices.

This graph has a set of vertices V= { 1,2,3,4,5} and a set of edges E= {

(1,2),(1,3),(2,3),(2,4),(2,5),(3,5),(4,50 }.

Now that you‟ve learned about the definition of graphs in data structures, you will

learn about their various types.

https://www.simplilearn.com/tutorials/data-structure-tutorial/what-is-data-structure

Types of Graphs in Data Structures

There are different types of graphs in data structures, each of which is detailed

below.

1. Finite Graph

The graph G=(V, E) is called a finite graph if the number of vertices and edges in the

graph is limited in number

2. Infinite Graph

The graph G=(V, E) is called a finite graph if the number of vertices and edges in the

graph is interminable.

3. Trivial Graph

A graph G= (V, E) is trivial if it contains only a single vertex and no edges.

4. Simple Graph

If each pair of nodes or vertices in a graph G=(V, E) has only one edge, it is a simple

graph. As a result, there is just one edge linking two vertices, depicting one-to-one

interactions between two elements.

5. Multi Graph

If there are numerous edges between a pair of vertices in a graph G= (V, E), the

graph is referred to as a multigraph. There are no self-loops in a Multigraph.

6. Null Graph

It's a reworked version of a trivial graph. If several vertices but no edges connect

them, a graph G= (V, E) is a null graph.

7. Complete Graph

If a graph G= (V, E) is also a simple graph, it is complete. Using the edges, with n

number of vertices must be connected. It's also known as a full graph because each

vertex's degree must be n-1.

9. Regular Graph

If a graph G= (V, E) is a simple graph with the same degree at each vertex, it is a

regular graph. As a result, every whole graph is a regular graph.

10. Weighted Graph

A graph G= (V, E) is called a labeled or weighted graph because each edge has a

value or weight representing the cost of traversing that edge.

11. Directed Graph

A directed graph also referred to as a digraph, is a set of nodes connected by edges,

each with a direction.

12. Undirected Graph

An undirected graph comprises a set of nodes and links connecting them. The order

of the two connected vertices is irrelevant and has no direction. You can form an

undirected graph with a finite number of vertices and edges.

13. Connected Graph

If there is a path between one vertex of a graph data structure and any other vertex,

the graph is connected.

14. Disconnected Graph

When there is no edge linking the vertices, you refer to the null graph as a

disconnected graph.

15. Cyclic Graph

If a graph contains at least one graph cycle, it is considered to be cyclic.

16. Acyclic Graph

When there are no cycles in a graph, it is called an acyclic graph.

17. Directed Acyclic Graph

It's also known as a directed acyclic graph (DAG), and it's a graph with directed

edges but no cycle. It represents the edges using an ordered pair of vertices since it

directs the vertices and stores some data.

18. Subgraph

The vertices and edges of a graph that are subsets of another graph are known as a

subgraph.

After you learn about the many types of graphs in graphs in data structures, you will

move on to graph terminologies.

Terminologies of Graphs in Data Structures

Following are the basic terminologies of graphs in data structures:

 An edge is one of the two primary units used to form graphs. Each edge has

two ends, which are vertices to which it is attached.

 If two vertices are endpoints of the same edge, they are adjacent.

 A vertex's outgoing edges are directed edges that point to the origin.

 A vertex's incoming edges are directed edges that point to the vertex's

destination.

 The total number of edges occurring to a vertex in a graph is its degree.

 The out-degree of a vertex in a directed graph is the total number of

outgoing edges, whereas the in-degree is the total number of incoming

edges.

 A vertex with an in-degree of zero is referred to as a source vertex, while

one with an out-degree of zero is known as sink vertex.

 An isolated vertex is a zero-degree vertex that is not an edge's endpoint.

 A path is a set of alternating vertices and edges, with each vertex connected

by an edge.

 The path that starts and finishes at the same vertex is known as a cycle.

 A path with unique vertices is called a simple path.

 For each pair of vertices x, y, a graph is strongly connected if it contains a

directed path from x to y and a directed path from y to x.

 A directed graph is weakly connected if all of its directed edges are

replaced with undirected edges, resulting in a connected graph. A weakly

linked graph's vertices have at least one out-degree or in-degree.

 A tree is a connected forest. The primary form of the tree is called a rooted

tree, which is a free tree.

 A spanning subgraph that is also a tree is known as a spanning tree.

 A connected component is the unconnected graph's most connected

subgraph.

 A bridge, which is an edge of removal, would sever the graph.

 Forest is a graph without a cycle.

Following that, you will look at the graph representation in this data structures

tutorial.

Representation of Graphs in Data Structures

Graphs in data structures are used to represent the relationships between objects.

Every graph consists of a set of points known as vertices or nodes connected by lines

known as edges. The vertices in a network represent entities.

The most frequent graph representations are the two that follow:

 Adjacency matrix

 Adjacency list

You‟ll look at these two representations of graphs in data structures in more detail:

Adjacency Matrix

 A sequential representation is an adjacency matrix.

 It's used to show which nodes are next to one another. I.e., is there any

connection between nodes in a graph?

 You create an MXM matrix G for this representation. If an edge exists

between vertex a and vertex b, the corresponding element of G, gi,j = 1,

otherwise gi,j = 0.

 If there is a weighted graph, you can record the edge's weight instead of 1s

and 0s.

Undirected Graph Representation

Directed Graph Representation

Weighted Undirected Graph Representation

Weight or cost is indicated at the graph's edge, a weighted graph representing these

values in the matrix.

Adjacency List

 A linked representation is an adjacency list.

 You keep a list of neighbors for each vertex in the graph in this

representation. It means that each vertex in the graph has a list of its

neighboring vertices.

 You have an array of vertices indexed by the vertex number, and the

corresponding array member for each vertex x points to a singly linked list

of x's neighbors.

Weighted Undirected Graph Representation Using Linked-List

Weighted Undirected Graph Representation Using an Array

We will now see which all operations are conducted in graphs data structure after

understanding the representation of graphs in the data structure.

Operations on Graphs in Data Structures

The operations you perform on the graphs in data structures are listed below:

 Creating graphs

 Insert vertex

 Delete vertex

 Insert edge

 Delete edge

You will go over each operation in detail one by one:

Creating Graphs

There are two techniques to make a graph:

1. Adjacency Matrix

The adjacency matrix of a simple labeled graph, also known as the connection

matrix, is a matrix with rows and columns labeled by graph vertices and a 1 or 0 in

position depending on whether they are adjacent or not.

2. Adjacency List

A finite graph is represented by an adjacency list, which is a collection of unordered

lists. Each unordered list describes the set of neighbors of a particular vertex in the

graph within an adjacency list.

Insert Vertex

When you add a vertex that after introducing one or more vertices or nodes, the

graph's size grows by one, increasing the matrix's size by one at the row and column

levels.

Delete Vertex

 Deleting a vertex refers to removing a specific node or vertex from a graph

that has been saved.

 If a removed node appears in the graph, the matrix returns that node. If a

deleted node does not appear in the graph, the matrix returns the node not

available.

Insert Edge

Connecting two provided vertices can be used to add an edge to a graph.

Delete Edge

The connection between the vertices or nodes can be removed to delete an edge.

The types of graph traversal algorithms will be discussed next in the graphs in this

data structures tutorial.

Graph Traversal Algorithm

The process of visiting or updating each vertex in a graph is known as graph

traversal. The sequence in which they visit the vertices is used to classify such

traversals. Graph traversal is a subset of tree traversal.

There are two techniques to implement a graph traversal algorithm:

 Breadth-first search

 Depth-first search

Breadth-First Search or BFS

BFS is a search technique for finding a node in a graph data structure that meets a

set of criteria.

 It begins at the root of the graph and investigates all nodes at the current

depth level before moving on to nodes at the next depth level.

 To maintain track of the child nodes that have been encountered but not yet

inspected, more memory, generally you require a queue.

Algorithm of breadth-first search

Step 1: Consider the graph you want to navigate.

Step 2: Select any vertex in your graph, say v1, from which you want to traverse the

graph.

Step 3: Examine any two data structures for traversing the graph.

 Visited array (size of the graph)

 Queue data structure

Step 4: Starting from the vertex, you will add to the visited array, and afterward, you

will v1's adjacent vertices to the queue data structure.

Step 5: Now, using the FIFO concept, you must remove the element from the queue,

put it into the visited array, and then return to the queue to add the adjacent vertices

of the removed element.

Step 6: Repeat step 5 until the queue is not empty and no vertex is left to be visited.

Depth-First Search or DFS

DFS is a search technique for finding a node in a graph data structure that meets a

set of criteria.

 The depth-first search (DFS) algorithm traverses or explores data structures

such as trees and graphs. The DFS algorithm begins at the root node and

examines each branch as far as feasible before backtracking.

 To maintain track of the child nodes that have been encountered but not yet

inspected, more memory, generally a stack, is required.

Algorithm of depth-first search

Step 1: Consider the graph you want to navigate.

Step 2: Select any vertex in our graph, say v1, from which you want to begin

traversing the graph.

Step 3: Examine any two data structures for traversing the graph.

 Visited array (size of the graph)

 Stack data structure

Step 4: Insert v1 into the array's first block and push all the adjacent nodes or

vertices of vertex v1 into the stack.

Step 5: Now, using the FIFO principle, pop the topmost element and put it into the

visited array, pushing all of the popped element's nearby nodes into it.

Step 6: If the topmost element of the stack is already present in the array, discard it

instead of inserting it into the visited array.

Step 7: Repeat step 6 until the stack data structure isn't empty.

You will now look at applications of graph data structures after understanding the

graph traversal algorithm in this tutorial.

Application of Graphs in Data Structures

Following are some applications of graphs in data structures:

 Graphs are used in computer science to depict the flow of computation.

 Users on Facebook are referred to as vertices, and if they are friends, there

is an edge connecting them. The Friend Suggestion system on Facebook is

based on graph theory.

 We come across the Resource Allocation Graph in the Operating System,

where each process and resource are regarded vertically. Edges are drawn

from resources to assigned functions or from the requesting process to the

desired resource. A stalemate will develop if this results in the

establishment of a cycle.

 Web pages are referred to as vertices on the World Wide Web. Suppose

there is a link from page A to page B that can represent an edge. This

application is an illustration of a directed graph.

 Graph transformation systems manipulate graphs in memory using rules.

Graph databases store and query graph-structured data in a transaction-safe,

permanent manner.

Trees in Data Structures

We read the linear data structures like an array, linked list, stack and queue in which

all the elements are arranged in a sequential manner. The different data structures are

used for different kinds of data.

Some factors are considered for choosing the data structure:

o What type of data needs to be stored?: It might be a possibility that a certain

data structure can be the best fit for some kind of data.

o Cost of operations: If we want to minimize the cost for the operations for the

most frequently performed operations. For example, we have a simple list on

which we have to perform the search operation; then, we can create an array

in which elements are stored in sorted order to perform the binary search. The

binary search works very fast for the simple list as it divides the search space

into half.

o Memory usage: Sometimes, we want a data structure that utilizes less

memory.

A tree is also one of the data structures that represent hierarchical data. Suppose we

want to show the employees and their positions in the hierarchical form then it can

be represented as shown below:

Let's understand some key points of the Tree data structure.

o A tree data structure is defined as a collection of objects or entities known as

nodes that are linked together to represent or simulate hierarchy.

o A tree data structure is a non-linear data structure because it does not store in

a sequential manner. It is a hierarchical structure as elements in a Tree are

arranged in multiple levels.

o In the Tree data structure, the topmost node is known as a root node. Each

node contains some data, and data can be of any type. In the above tree

structure, the node contains the name of the employee, so the type of data

would be a string.

o Each node contains some data and the link or reference of other nodes that can

be called children.

Some basic terms used in Tree data structure.

Let's consider the tree structure, which is shown below:

In the above structure, each node is labeled with some number. Each arrow shown in

the above figure is known as a link between the two nodes.

Root: The root node is the topmost node in the tree hierarchy. In other words, the

root node is the one that doesn't have any parent. In the above structure, node

numbered 1 is the root node of the tree. If a node is directly linked to some

other node, it would be called a parent-child relationship.

Child node: If the node is a descendant of any node, then the node is known as a

child node.

Parent: If the node contains any sub-node, then that node is said to be the parent

of that sub-node.

Sibling: The nodes that have the same parent are known as siblings.

Leaf Node:- The node of the tree, which doesn't have any child node, is called a

leaf node. A leaf node is the bottom-most node of the tree. There can be any

number of leaf nodes present in a general tree. Leaf nodes can also be called

external nodes.

Internal nodes: A node has atleast one child node known as an internal

Ancestor node:- An ancestor of a node is any predecessor node on a path from

the root to that node. The root node doesn't have any ancestors. In the tree shown

in the above image, nodes 1, 2, and 5 are the ancestors of node 10.

Descendant: The immediate successor of the given node is known as a

descendant of a node. In the above figure, 10 is the descendant of node 5.

Properties of Tree data structure

o Recursive data structure: The tree is also known as a recursive data

structure. A tree can be defined as recursively because the distinguished node

in a tree data structure is known as a root node. The root node of the tree

contains a link to all the roots of its subtrees. The left subtree is shown in the

yellow color in the below figure, and the right subtree is shown in the red

color. The left subtree can be further split into subtrees shown in three

different colors. Recursion means reducing something in a self-similar

manner. So, this recursive property of the tree data structure is implemented in

various applications.

o Number of edges: If there are n nodes, then there would n-1 edges. Each

arrow in the structure represents the link or path. Each node, except the root

node, will have atleast one incoming link known as an edge. There would be

one link for the parent-child relationship.

o Depth of node x: The depth of node x can be defined as the length of the path

from the root to the node x. One edge contributes one-unit length in the path.

So, the depth of node x can also be defined as the number of edges between

the root node and the node x. The root node has 0 depth.

o Height of node x: The height of node x can be defined as the longest path

from the node x to the leaf node.

Terminology Description Example From Diagram

Root

Root is a special node in a tree.

The entire tree originates from it.

It does not have a parent.

Node A

Parent Node
Parent node is an immediate

predecessor of a node.
B is parent of D & E

Child Node
All immediate successors of a

node are its children.
D & E are children of B

Leaf
Node which does not have any

child is called as leaf

H, I, J, F and G are leaf

nodes

Edge

Edge is a connection between one

node to another. It is a line

between two nodes or a node and

a leaf.

Line between A & B is edge

Siblings
Nodes with the same parent are

called Siblings.
D & E are siblings

Path /

Traversing

Path is a number of successive

edges from source node to

destination node.

 A – B – E – J is path from

node A to E

Height of

Node

Height of a node represents the

number of edges on the longest

path between that node and a leaf.

A, B, C, D & E can have

height. Height of A is no. of

edges between A and H, as

that is the longest path,

which is 3. Height of C is 1

Levels of

node
Level of a node represents the

generation of a node. If the root

Level of H, I & J is 3. Level

of D, E, F & G is 2

node is at level 0, then its next

child node is at level 1, its

grandchild is at level 2, and so on

Degree of

Node

Degree of a node represents the

number of children of a node.

Degree of D is 2 and of E is

1

Sub tree
Descendants of a node represent

subtree.

Nodes D, H, I represent one

subtree.

Based on the properties of the Tree data structure, trees are classified into various

categories.

Implementation of Tree

The tree data structure can be created by creating the nodes dynamically with the

help of the pointers. The tree in the memory can be represented as shown below:

The above figure shows the representation of the tree data structure in the memory.

In the above structure, the node contains three fields. The second field stores the

data; the first field stores the address of the left child, and the third field stores the

address of the right child.

Applications of trees

The following are the applications of trees:

Storing naturally hierarchical data: Trees are used to store the data in the

hierarchical structure. For example, the file system. The file system stored on the

disc drive, the file and folder are in the form of the naturally hierarchical data and

stored in the form of trees.

Organize data: It is used to organize data for efficient insertion, deletion and

searching. For example, a binary tree has a logN time for searching an element.

Trie: It is a special kind of tree that is used to store the dictionary. It is a fast and

efficient way for dynamic spell checking.

Heap: It is also a tree data structure implemented using arrays. It is used to

implement priority queues.

B-Tree and B+Tree: B-Tree and B+Tree are the tree data structures used to

implement indexing in databases.

Routing table: The tree data structure is also used to store the data in routing

tables in the routers.

Types of Tree data structure

The following are the types of a tree data structure:

General tree: The general tree is one of the types of tree data structure. In the

general tree, a node can have either 0 or maximum n number of nodes. There is

no restriction imposed on the degree of the node (the number of nodes that a node

can contain). The topmost node in a general tree is known as a root node. The

children of the parent node are known as subtrees.

There can be n number of subtrees in a general tree. In the general tree, the

subtrees are unordered as the nodes in the subtree cannot be ordered.

Every non-empty tree has a downward edge, and these edges are connected to the

nodes known as child nodes. The root node is labeled with level 0. The nodes

that have the same parent are known as siblings.

Binary tree: Here, binary name itself suggests two numbers, i.e., 0 and 1. In a

binary tree, each node in a tree can have utmost two child nodes. Here, utmost

means whether the node has 0 nodes, 1 node or 2 nodes.

https://www.javatpoint.com/binary-tree

Binary Search tree: Binary search tree is a non-linear data structure in which

one node is connected to n number of nodes. It is a node-based data structure. A

node can be represented in a binary search tree with three fields, i.e., data part,

left-child, and right-child. A node can be connected to the utmost two child nodes

in a binary search tree, so the node contains two pointers (left child and right

child pointer).

Every node in the left subtree must contain a value less than the value of the root

node, and the value of each node in the right subtree must be bigger than the

value of the root node.

AVL tree

It is one of the types of the binary tree, or we can say that it is a variant of the

binary search tree. AVL tree satisfies the property of the binary tree as well as of

the binary search tree. It is a self-balancing binary search tree that was invented

by Adelson Velsky Lindas. Here, self-balancing means that balancing the heights

of left subtree and right subtree. This balancing is measured in terms of

the balancing factor.

We can consider a tree as an AVL tree if the tree obeys the binary search tree as

well as a balancing factor. The balancing factor can be defined as the difference

between the height of the left subtree and the height of the right subtree. The

balancing factor's value must be either 0, -1, or 1; therefore, each node in the

AVL tree should have the value of the balancing factor either as 0, -1, or 1.

https://www.javatpoint.com/binary-search-tree
https://www.javatpoint.com/avl-tree

Binary Tree

The Binary tree means that the node can have maximum two children. Here, binary

name itself suggests that 'two'; therefore, each node can have either 0, 1 or 2

children.

Let's understand the binary tree through an example.

The above tree is a binary tree because each node contains the utmost two children.

The logical representation of the above tree is given below:

In the above tree, node 1 contains two pointers, i.e., left and a right pointer pointing

to the left and right node respectively. The node 2 contains both the nodes (left and

right node); therefore, it has two pointers (left and right). The nodes 3, 5 and 6 are

the leaf nodes, so all these nodes contain NULL pointer on both left and right parts.

Properties of Binary Tree

o At each level of i, the maximum number of nodes is 2
i
.

o The height of the tree is defined as the longest path from the root node to the

leaf node. The tree which is shown above has a height equal to 3. Therefore,

the maximum number of nodes at height 3 is equal to (1+2+4+8) = 15. In

general, the maximum number of nodes possible at height h is (2
0
 + 2

1
 +

2
2
+….2

h
) = 2

h+1
 -1.

o The minimum number of nodes possible at height h is equal to h+1.

o If the number of nodes is minimum, then the height of the tree would be

maximum. Conversely, if the number of nodes is maximum, then the height of

the tree would be minimum.

If there are 'n' number of nodes in the binary tree.

The minimum height can be computed as:

As we know that,

n = 2
h+1

 -1

n+1 = 2
h+1

Taking log on both the sides,

log2(n+1) = log2(2
h+1

)

log2(n+1) = h+1

h = log2(n+1) - 1

The maximum height can be computed as:

As we know that,

n = h+1

h= n-1

Types of Binary Tree

There are four types of Binary tree:

o Full/ proper/ strict Binary tree

o Complete Binary tree

o Perfect Binary tree

o Degenerate Binary tree

o Balanced Binary tree

1. Full/ proper/ strict Binary tree

The full binary tree is also known as a strict binary tree. The tree can only be

considered as the full binary tree if each node must contain either 0 or 2 children.

The full binary tree can also be defined as the tree in which each node must contain

2 children except the leaf nodes.

Let's look at the simple example of the Full Binary tree.

In the above tree, we can observe that each node is either containing zero or two

children; therefore, it is a Full Binary tree.

Properties of Full Binary Tree

o The number of leaf nodes is equal to the number of internal nodes plus 1. In

the above example, the number of internal nodes is 5; therefore, the number of

leaf nodes is equal to 6.

o The maximum number of nodes is the same as the number of nodes in the

binary tree, i.e., 2
h+1

 -1.

o The minimum number of nodes in the full binary tree is 2*h-1.

o The minimum height of the full binary tree is log2(n+1) - 1.

o The maximum height of the full binary tree can be computed as:

n= 2*h - 1

n+1 = 2*h

h = n+1/2

Complete Binary Tree

The complete binary tree is a tree in which all the nodes are completely filled except

the last level. In the last level, all the nodes must be as left as possible. In a complete

binary tree, the nodes should be added from the left.

Let's create a complete binary tree.

The above tree is a complete binary tree because all the nodes are completely filled,

and all the nodes in the last level are added at the left first.

Properties of Complete Binary Tree

o The maximum number of nodes in complete binary tree is 2
h+1

 - 1.

o The minimum number of nodes in complete binary tree is 2
h
.

o The minimum height of a complete binary tree is log2(n+1) - 1.

o The maximum height of a complete binary tree is

Perfect Binary Tree

A tree is a perfect binary tree if all the internal nodes have 2 children, and all the leaf

nodes are at the same level.

Let's look at a simple example of a perfect binary tree.

The below tree is not a perfect binary tree because all the leaf nodes are not at the

same level.

Note: All the perfect binary trees are the complete binary trees as well as the full

binary tree, but vice versa is not true, i.e., all complete binary trees and full binary

trees are the perfect binary trees.

Degenerate Binary Tree

The degenerate binary tree is a tree in which all the internal nodes have only one

children.

Let's understand the Degenerate binary tree through examples.

The above tree is a degenerate binary tree because all the nodes have only one child.

It is also known as a right-skewed tree as all the nodes have a right child only.

The above tree is also a degenerate binary tree because all the nodes have only one

child. It is also known as a left-skewed tree as all the nodes have a left child only.

Balanced Binary Tree

The balanced binary tree is a tree in which both the left and right trees differ by

atmost 1. For example, AVL and Red-Black trees are balanced binary tree.

Let's understand the balanced binary tree through examples.

The above tree is a balanced binary tree because the difference between the left

subtree and right subtree is zero.

The above tree is not a balanced binary tree because the difference between the left

subtree and the right subtree is greater than 1.

Binary Tree Implementation

A Binary tree is implemented with the help of pointers. The first node in the tree is

represented by the root pointer. Each node in the tree consists of three parts, i.e.,

data, left pointer and right pointer. To create a binary tree, we first need to create the

node. We will create the node of user-defined as shown below:

Create Root Node

We just create a Node class and add assign a value to the node. This becomes tree

with only a root node.

Example

class Node:

 def __init__(self, data):

 self.left = None

 self.right = None

 self.data = data

 def PrintTree(self):

 print(self.data)

root = Node(10)

root.PrintTree()

Output

When the above code is executed, it produces the following result −

10

Inserting into a Tree

To insert into a tree we use the same node class created above and add a insert class

to it. The insert class compares the value of the node to the parent node and decides

to add it as a left node or a right node. Finally the PrintTree class is used to print the

tree.

Example

class Node:

 def __init__(self, data):

 self.left = None

 self.right = None

 self.data = data

 def insert(self, data):

Compare the new value with the parent node

 if self.data:

 if data < self.data:

 if self.left is None:

 self.left = Node(data)

 else:

 self.left.insert(data)

 elif data > self.data:

 if self.right is None:

 self.right = Node(data)

 else:

 self.right.insert(data)

 else:

 self.data = data

Print the tree

 def PrintTree(self):

 if self.left:

 self.left.PrintTree()

 print(self.data),

 if self.right:

 self.right.PrintTree()

Use the insert method to add nodes

root = Node(12)

root.insert(6)

root.insert(14)

root.insert(3)

root.PrintTree()

Output

When the above code is executed, it produces the following result −

3 6 12 14

Traversing a Tree

The tree can be traversed by deciding on a sequence to visit each node. As we can

clearly see we can start at a node then visit the left sub-tree first and right sub-tree

next. Or we can also visit the right sub-tree first and left sub-tree next. Accordingly

there are different names for these tree traversal methods.

Tree Traversal Algorithms

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root

(head) node. That is, we cannot randomly access a node in a tree. There are three

ways which we use to traverse a tree.

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the

right sub-tree. We should always remember that every node may represent a subtree

itself.

In the below python program, we use the Node class to create place holders for the

root node as well as the left and right nodes. Then, we create an insert function to

add data to the tree. Finally, the In-order traversal logic is implemented by creating

an empty list and adding the left node first followed by the root or parent node.

At last the left node is added to complete the In-order traversal. Please note that this

process is repeated for each sub-tree until all the nodes are traversed.

Example

class Node:

 def __init__(self, data):

 self.left = None

 self.right = None

 self.data = data

Insert Node

 def insert(self, data):

 if self.data:

 if data < self.data:

 if self.left is None:

 self.left = Node(data)

 else:

 self.left.insert(data)

 else data > self.data:

 if self.right is None:

 self.right = Node(data)

 else:

 self.right.insert(data)

 else:

 self.data = data

Print the Tree

 def PrintTree(self):

 if self.left:

 self.left.PrintTree()

 print(self.data),

 if self.right:

 self.right.PrintTree()

Inorder traversal

Left -> Root -> Right

 def inorderTraversal(self, root):

 res = []

 if root:

 res = self.inorderTraversal(root.left)

 res.append(root.data)

 res = res + self.inorderTraversal(root.right)

 return res

root = Node(27)

root.insert(14)

root.insert(35)

root.insert(10)

root.insert(19)

root.insert(31)

root.insert(42)

print(root.inorderTraversal(root))

Output

When the above code is executed, it produces the following result −

[10, 14, 19, 27, 31, 35, 42]

Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree and

finally the right subtree.

In the below python program, we use the Node class to create place holders for the

root node as well as the left and right nodes. Then, we create an insert function to

add data to the tree. Finally, the Pre-order traversal logic is implemented by

creating an empty list and adding the root node first followed by the left node.

At last, the right node is added to complete the Pre-order traversal. Please note that,

this process is repeated for each sub-tree until all the nodes are traversed.

Example

class Node:

 def __init__(self, data):

 self.left = None

 self.right = None

 self.data = data

Insert Node

 def insert(self, data):

 if self.data:

 if data < self.data:

 if self.left is None:

 self.left = Node(data)

 else:

 self.left.insert(data)

 elif data > self.data:

 if self.right is None:

 self.right = Node(data)

 else:

 self.right.insert(data)

 else:

 self.data = data

Print the Tree

 def PrintTree(self):

 if self.left:

 self.left.PrintTree()

 print(self.data),

 if self.right:

 self.right.PrintTree()

Preorder traversal

Root -> Left ->Right

 def PreorderTraversal(self, root):

 res = []

 if root:

 res.append(root.data)

 res = res + self.PreorderTraversal(root.left)

 res = res + self.PreorderTraversal(root.right)

 return res

root = Node(27)

root.insert(14)

root.insert(35)

root.insert(10)

root.insert(19)

root.insert(31)

root.insert(42)

print(root.PreorderTraversal(root))

Output

When the above code is executed, it produces the following result −

[27, 14, 10, 19, 35, 31, 42]

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First, we

traverse the left subtree, then the right subtree and finally the root node.

In the below python program, we use the Node class to create place holders for the

root node as well as the left and right nodes. Then, we create an insert function to

add data to the tree. Finally, the Post-order traversal logic is implemented by

creating an empty list and adding the left node first followed by the right node.

At last the root or parent node is added to complete the Post-order traversal. Please

note that, this process is repeated for each sub-tree until all the nodes are traversed.

Example

class Node:

 def __init__(self, data):

 self.left = None

 self.right = None

 self.data = data

Insert Node

 def insert(self, data):

 if self.data:

 if data < self.data:

 if self.left is None:

 self.left = Node(data)

 else:

 self.left.insert(data)

 else if data > self.data:

 if self.right is None:

 self.right = Node(data)

 else:

 self.right.insert(data)

 else:

 self.data = data

Print the Tree

 def PrintTree(self):

 if self.left:

 self.left.PrintTree()

print(self.data),

if self.right:

self.right.PrintTree()

Postorder traversal

Left ->Right -> Root

def PostorderTraversal(self, root):

res = []

if root:

res = self.PostorderTraversal(root.left)

res = res + self.PostorderTraversal(root.right)

res.append(root.data)

return res

root = Node(27)

root.insert(14)

root.insert(35)

root.insert(10)

root.insert(19)

root.insert(31)

root.insert(42)

print(root.PostorderTraversal(root))

Output

When the above code is executed, it produces the following result −

[10, 19, 14, 31, 42, 35, 27]

Binary Search tree

A binary search tree follows some order to arrange the elements. In a Binary search

tree, the value of left node must be smaller than the parent node, and the value of

right node must be greater than the parent node. This rule is applied recursively to

the left and right subtrees of the root.

Let's understand the concept of Binary search tree with an example.

In the above figure, we can observe that the root node is 40, and all the nodes of the

left subtree are smaller than the root node, and all the nodes of the right subtree are

greater than the root node.

Similarly, we can see the left child of root node is greater than its left child and

smaller than its right child. So, it also satisfies the property of binary search tree.

Therefore, we can say that the tree in the above image is a binary search tree.

Suppose if we change the value of node 35 to 55 in the above tree, check whether

the tree will be binary search tree or not.

In the above tree, the value of root node is 40, which is greater than its left child 30

but smaller than right child of 30, i.e., 55. So, the above tree does not satisfy the

property of Binary search tree. Therefore, the above tree is not a binary search tree.

Advantages of Binary search tree

o Searching an element in the Binary search tree is easy as we always have a

hint that which subtree has the desired element.

o As compared to array and linked lists, insertion and deletion operations are

faster in BST.

Example of creating a binary search tree

Now, let's see the creation of binary search tree using an example.

Suppose the data elements are - 45, 15, 79, 90, 10, 55, 12, 20, 50

o First, we have to insert 45 into the tree as the root of the tree.

o Then, read the next element; if it is smaller than the root node, insert it as the

root of the left subtree, and move to the next element.

o Otherwise, if the element is larger than the root node, then insert it as the root

of the right subtree.

Now, let's see the process of creating the Binary search tree using the given data

element. The process of creating the BST is shown below -

Step 1 - Insert 45.

Step 2 - Insert 15.

As 15 is smaller than 45, so insert it as the root node of the left subtree.

Step 3 - Insert 79.

As 79 is greater than 45, so insert it as the root node of the right subtree.

Step 4 - Insert 90.

90 is greater than 45 and 79, so it will be inserted as the right subtree of 79.

Step 5 - Insert 10.

10 is smaller than 45 and 15, so it will be inserted as a left subtree of 15.

Step 6 - Insert 55.

55 is larger than 45 and smaller than 79, so it will be inserted as the left subtree of

79.

Step 7 - Insert 12.

12 is smaller than 45 and 15 but greater than 10, so it will be inserted as the right

subtree of 10.

Step 8 - Insert 20.

20 is smaller than 45 but greater than 15, so it will be inserted as the right subtree of

15.

Step 9 - Insert 50.

50 is greater than 45 but smaller than 79 and 55. So, it will be inserted as a left

subtree of 55.

Now, the creation of binary search tree is completed. After that, let's move towards

the operations that can be performed on Binary search tree.

We can perform insert, delete and search operations on the binary search tree.

Let's understand how a search is performed on a binary search tree.

Searching in Binary search tree

Searching means to find or locate a specific element or node in a data structure. In

Binary search tree, searching a node is easy because elements in BST are stored in a

specific order. The steps of searching a node in Binary Search tree are listed as

follows -

1. First, compare the element to be searched with the root element of the tree.

2. If root is matched with the target element, then return the node's location.

3. If it is not matched, then check whether the item is less than the root element,

if it is smaller than the root element, then move to the left subtree.

4. If it is larger than the root element, then move to the right subtree.

5. Repeat the above procedure recursively until the match is found.

6. If the element is not found or not present in the tree, then return NULL.

Now, let's understand the searching in binary tree using an example. We are taking

the binary search tree formed above. Suppose we have to find node 20 from the

below tree.

Step1:

Step2:

Step3:

Now, let's see the algorithm to search an element in the Binary search tree.

Algorithm to search an element in Binary search tree

Search (root, item)

Step 1 - if (item = root → data) or (root = NULL)

 return root

else if (item < root → data)

 return Search(root → left, item)

else

 return Search(root → right, item)

 END if

Step 2 - END

Now let's understand how the deletion is performed on a binary search tree. We will

also see an example to delete an element from the given tree.

Deletion in Binary Search tree

In a binary search tree, we must delete a node from the tree by keeping in mind that

the property of BST is not violated. To delete a node from BST, there are three

possible situations occur -

1. The node to be deleted is the leaf node, or,

2. The node to be deleted has only one child, and,

3. The node to be deleted has two children

We will understand the situations listed above in detail.

(1) When the node to be deleted is the leaf node

It is the simplest case to delete a node in BST. Here, we have to replace the leaf node

with NULL and simply free the allocated space.

We can see the process to delete a leaf node from BST in the below image. In below

image, suppose we have to delete node 90, as the node to be deleted is a leaf node,

so it will be replaced with NULL, and the allocated space will free.

(2)When the node to be deleted has only one child

In this case, we have to replace the target node with its child, and then delete the

child node. It means that after replacing the target node with its child node, the child

node will now contain the value to be deleted. So, we simply have to replace the

child node with NULL and free up the allocated space.

We can see the process of deleting a node with one child from BST in the below

image. In the below image, suppose we have to delete the node 79, as the node to be

deleted has only one child, so it will be replaced with its child 55.

So, the replaced node 79 will now be a leaf node that can be easily deleted.

(3)When the node to be deleted has two children

This case of deleting a node in BST is a bit complex among other two cases. In such

a case, the steps to be followed are listed as follows -

o First, find the inorder successor of the node to be deleted.

o After that, replace that node with the inorder successor until the target node is

placed at the leaf of tree.

o And at last, replace the node with NULL and free up the allocated space.

The inorder successor is required when the right child of the node is not empty. We

can obtain the inorder successor by finding the minimum element in the right child

of the node.

We can see the process of deleting a node with two children from BST in the below

image. In the below image, suppose we have to delete node 45 that is the root node,

as the node to be deleted has two children, so it will be replaced with its inorder

successor. Now, node 45 will be at the leaf of the tree so that it can be deleted easily.

Now let's understand how insertion is performed on a binary search tree.

Insertion in Binary Search tree

A new key in BST is always inserted at the leaf. To insert an element in BST, we

have to start searching from the root node; if the node to be inserted is less than the

root node, then search for an empty location in the left subtree. Else, search for the

empty location in the right subtree and insert the data. Insert in BST is similar to

searching, as we always have to maintain the rule that the left subtree is smaller than

the root, and right subtree is larger than the root.

Now, let's see the process of inserting a node into BST using an example.

The complexity of the Binary Search tree

Let's see the time and space complexity of the Binary search tree. We will see the

time complexity for insertion, deletion, and searching operations in best case,

average case, and worst case.

1. Time Complexity

Operations Best case time

complexity

Average case time

complexity

Worst case time

complexity

Insertion O(log n) O(log n) O(n)

Deletion O(log n) O(log n) O(n)

Search O(log n) O(log n) O(n)

Where 'n' is the number of nodes in the given tree.

Search Operation

Algorithm:

If root == NULL

 return NULL;

If number == root->data

 return root->data;

If number < root->data

 return search(root->left)

If number > root->data

 return search(root->right)

Insert Operation

Algorithm:

If node == NULL

 return createNode(data)

if (data < node->data)

 node->left = insert(node->left, data);

else if (data > node->data)

 node->right = insert(node->right, data);

return node;

Deletion Operation

Binary Search Tree operations in Python

Create a node

class Node:

 def __init__(self, key):

 self.key = key

 self.left = None

 self.right = None

Inorder traversal

def inorder(root):

 if root is not None:

 # Traverse left

 inorder(root.left)

 # Traverse root

 print(str(root.key) + "->", end=' ')

 # Traverse right

 inorder(root.right)

Insert a node

def insert(node, key):

 # Return a new node if the tree is empty

 if node is None:

 return Node(key)

 # Traverse to the right place and insert the node

 if key < node.key:

 node.left = insert(node.left, key)

 else:

 node.right = insert(node.right, key)

 return node

Find the inorder successor

def minValueNode(node):

 current = node

 # Find the leftmost leaf

 while(current.left is not None):

 current = current.left

 return current

Deleting a node

def deleteNode(root, key):

 # Return if the tree is empty

 if root is None:

 return root

 # Find the node to be deleted

 if key < root.key:

 root.left = deleteNode(root.left, key)

 elif(key > root.key):

 root.right = deleteNode(root.right, key)

 else:

 # If the node is with only one child or no child

 if root.left is None:

 temp = root.right

 root = None

 return temp

 elif root.right is None:

 temp = root.left

 root = None

 return temp

 # If the node has two children,

 # place the inorder successor in position of the node to be deleted

 temp = minValueNode(root.right)

 root.key = temp.key

 # Delete the inorder successor

 root.right = deleteNode(root.right, temp.key)

 return root

root = None

root = insert(root, 8)

root = insert(root, 3)

root = insert(root, 1)

root = insert(root, 6)

root = insert(root, 7)

root = insert(root, 10)

root = insert(root, 14)

root = insert(root, 4)

print("Inorder traversal: ", end=' ')

inorder(root)

print("\nDelete 10")

root = deleteNode(root, 10)

print("Inorder traversal: ", end=' ')

inorder(root)

AVL Tree Datastructure

Introduction:

To control the height of the binary search tree by not letting it to be skewed the

developers introduced “AVL Trees”. The time taken for all operations in a binary

search tree of height h is O(h). However, it can be extended to O(n) if the BST

becomes skewed (i.e. worst case). By limiting this height to log n, AVL tree imposes

an upper bound on each operation to be O(log n) where n is the number of nodes.

 AVL tree is a height-balanced binary search tree. That means, an AVL tree is

also a binary search tree but it is a balanced tree.

 A binary search tree is said to be balanced if, the difference between the

heights of left and right subtrees of every node in the tree is either -1, 0 or +1.

 In other words, a binary tree is said to be balanced if the height of left and

right children of every node differ by either -1, 0 or +1. In an AVL tree, every

node maintains an extra information known as “balance factor”.

 The AVL tree was introduced in the year 1962 by G.M. Adelson-Velsky and

E.M. Landis.

An AVL tree is defined as follows...

Def:An AVL tree is a balanced binary search tree. In an AVL tree, balance

factor of every node is either -1, 0 or +1.

 Balance factor of a node is the difference between the heights of the left and

right subtrees of that node.

 The balance factor of a node is calculated either height of left subtree -

height of right subtree (OR) height of right subtree - height of left subtree.

In the following explanation, we calculate as follows...

Balance factor = heightOfLeftSubtree - heightOfRightSubtree

Note:

 If balance factor of any node is 0, it means that the left sub-tree and right sub-

tree contain equal height.

 If balance factor of any node is -1, it means that the left sub-tree is one level

lower than the right sub-tree.

Example of AVL Tree

Example-1

Example-2

The above tree is a binary search tree and every node is satisfying balance factor

condition. So this tree is said to be an AVL tree.

Complexity

Algorithm Average case Worst case

Space o(n) o(n)

Search o(log n) o(log n)

Note:Every AVL Tree is a binary search tree but every Binary Search Tree need

not be AVL tree.

Insert o(log n) o(log n)

Delete o(log n) o(log n)

Operations on AVL tree

 Due to the fact that, AVL tree is also a binary search tree therefore, all the

operations are performed in the same way as they are performed in a binary

search tree.

 Searching and traversing do not lead to the violation in property of AVL tree.

 However, insertion and deletion are the operations which can violate this

property and therefore, they need to be revisited.

SN Operation Description

1 Insertion Insertion in AVL tree is performed in the same way as it is

performed in a binary search tree. However, it may lead to

violation in the AVL tree property and therefore the tree may

need balancing. The tree can be balanced by applying rotations.

2 Deletion Deletion can also be performed in the same way as it is performed

in a binary search tree. Deletion may also disturb the balance of

the tree therefore, various types of rotations are used to rebalance

the tree.

AVL Tree Rotations

 In AVL tree, after performing operations like insertion and deletion we need

to check the balance factor of every node in the tree.

 If every node satisfies the balance factor condition then we conclude the

operation otherwise we must make it balanced.

https://www.javatpoint.com/insertion-in-avl-tree
https://www.javatpoint.com/deletion-in-avl-tree

 Whenever the tree becomes imbalanced due to any operation we

use rotation operations to make the tree balanced.

Rotation operations are used to make the tree balanced.

Def: Rotation is the process of moving nodes either to left or to right to make

the tree balanced.

There are four rotations and they are classified into two types.

Single Left Rotation (LL Rotation)

When BST becomes unbalanced, due to a node is inserted into the left subtree of the

left subtree of C, then we perform LL rotation, LL rotation is clockwise rotation,

which is applied on the edge below a node having balance factor 2.

In above example, node C has balance factor 2 because a node A is inserted in the

left subtree of C left subtree. We perform the LL rotation on the edge below A.

https://www.javatpoint.com/ll-rotation-in-avl-tree

Single Right Rotation (RR Rotation)

When BST becomes unbalanced, due to a node is inserted into the right subtree of

the right subtree of A, then we perform RR rotation, RR rotation is an anticlockwise

rotation, which is applied on the edge below a node having balance factor -2

In above example, node A has balance factor -2 because a node C is inserted in the

right subtree of A right subtree. We perform the RR rotation on the edge below A.

Left Right Rotation (LR Rotation)

LR rotation = RR rotation + LL rotation, i.e., first RR rotation is performed on

subtree and then LL rotation is performed on full tree, by full tree we mean the first

node from the path of inserted node whose balance factor is other than -1, 0, or 1.

Let us understand each and every step very clearly:

State Action

A node B has been inserted into the right subtree of A the left

subtree of C, because of which C has become an unbalanced node

having balance factor 2. This case is L R rotation where: Inserted

node is in the right subtree of left subtree of C

https://www.javatpoint.com/rr-rotation-in-avl-tree

As LR rotation = RR + LL rotation, hence RR (anticlockwise) on

subtree rooted at A is performed first. By doing RR rotation,

node A, has become the left subtree of B.

After performing RR rotation, node C is still unbalanced, i.e.,

having balance factor 2, as inserted node A is in the left of left

of C

Now we perform LL clockwise rotation on full tree, i.e. on node

C. node C has now become the right subtree of node B, A is left

subtree of B

Balance factor of each node is now either -1, 0, or 1, i.e. BST is

balanced now.

Right Left Rotation (RL Rotation)

 R L rotation = LL rotation + RR rotation, i.e., first LL rotation is performed on

subtree and then RR rotation is performed on full tree, by full tree we mean the first

node from the path of inserted node whose balance factor is other than -1, 0, or 1.

State Action

https://www.javatpoint.com/rl-rotation-in-avl-tree

A node B has been inserted into the left subtree of C the right

subtree of A, because of which A has become an unbalanced

node having balance factor - 2. This case is RL rotation where:

Inserted node is in the left subtree of right subtree of A

As RL rotation = LL rotation + RR rotation, hence, LL

(clockwise) on subtree rooted at C is performed first. By doing

RR rotation, node C has become the right subtree of B.

After performing LL rotation, node A is still unbalanced, i.e.

having balance factor -2, which is because of the right-subtree of

the right-subtree node A.

Now we perform RR rotation (anticlockwise rotation) on full

tree, i.e. on node A. node C has now become the right subtree of

node B, and node A has become the left subtree of B.

Balance factor of each node is now either -1, 0, or 1, i.e., BST is

balanced now.

Operations on an AVL Tree

The following operations are performed on AVL tree...

1. Search

2. Insertion

3. Deletion

Search Operation in AVL Tree

In an AVL tree, the search operation is performed with O(log n) time complexity.

The search operation in the AVL tree is similar to the search operation in a Binary

search tree. We use the following steps to search an element in AVL tree...

 Step 1 - Read the search element from the user.

 Step 2 - Compare the search element with the value of root node in the tree.

 Step 3 - If both are matched, then display "Given node is found!!!" and

terminate the function

 Step 4 - If both are not matched, then check whether search element is smaller

or larger than that node value.

 Step 5 - If search element is smaller, then continue the search process in left

subtree.

 Step 6 - If search element is larger, then continue the search process in right

subtree.

 Step 7 - Repeat the same until we find the exact element or until the search

element is compared with the leaf node.

 Step 8 - If we reach to the node having the value equal to the search value,

then display "Element is found" and terminate the function.

 Step 9 - If we reach to the leaf node and if it is also not matched with the

search element, then display "Element is not found" and terminate the

function.

Insertion Operation in AVL Tree

In an AVL tree, the insertion operation is performed with O(log n) time complexity.

In AVL Tree, a new node is always inserted as a leaf node. The insertion operation

is performed as follows...

 Step 1 - Insert the new element into the tree using Binary Search Tree

insertion logic.

 Step 2 - After insertion, check the Balance Factor of every node.

 Step 3 - If the Balance Factor of every node is 0 or 1 or -1 then go for next

operation.

 Step 4 - If the Balance Factor of any node is other than 0 or 1 or -1 then that

tree is said to be imbalanced. In this case, perform suitable Rotation to make

it balanced and go for next operation.

Example 1: Construct an AVL Tree by inserting numbers from 1 to 8.

Example 2:

Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

1. Insert H, I, J

On inserting the above elements, especially in the case of H, the BST becomes

unbalanced as the Balance Factor of H is -2. Since the BST is right-skewed, we will

perform RR Rotation on node H.

The resultant balance tree is:

2. Insert B, A

On inserting the above elements, especially in case of A, the BST becomes

unbalanced as the Balance Factor of H and I is 2, we consider the first node from the

last inserted node i.e. H. Since the BST from H is left-skewed, we will perform LL

Rotation on node H.

The resultant balance tree is:

3. Insert E

On inserting E, BST becomes unbalanced as the Balance Factor of I is 2, since if we

travel from E to I we find that it is inserted in the left subtree of right subtree of I, we

will perform LR Rotation on node I. LR = RR + LL rotation

3 a) We first perform RR rotation on node B

The resultant tree after RR rotation is:

3b) We first perform LL rotation on the node I

The resultant balanced tree after LL rotation is:

4. Insert C, F, D

On inserting C, F, D, BST becomes unbalanced as the Balance Factor of B and H is -

2, since if we travel from D to B we find that it is inserted in the right subtree of left

subtree of B, we will perform RL Rotation on node I. RL = LL + RR rotation.

4a) We first perform LL rotation on node E

The resultant tree after LL rotation is:

4b) We then perform RR rotation on node B

The resultant balanced tree after RR rotation is:

5. Insert G

On inserting G, BST become unbalanced as the Balance Factor of H is 2, since if we

travel from G to H, we find that it is inserted in the left subtree of right subtree of H,

we will perform LR Rotation on node I. LR = RR + LL rotation.

5 a) We first perform RR rotation on node C

The resultant tree after RR rotation is:

5 b) We then perform LL rotation on node H

The resultant balanced tree after LL rotation is:

6. Insert K

On inserting K, BST becomes unbalanced as the Balance Factor of I is -2. Since the

BST is right-skewed from I to K, hence we will perform RR Rotation on the node I.

The resultant balanced tree after RR rotation is:

7. Insert L

On inserting the L tree is still balanced as the Balance Factor of each node is now

either, -1, 0, +1. Hence the tree is a Balanced AVL tree

Deletion Operation in AVL Tree

The deletion operation in the AVL tree is the same as the deletion operation in BST.

In the AVL tree, the node is always deleted as a leaf node and after the deletion of

the node, the balance factor of each node is modified accordingly. Rotation

operations are used to modify the balance factor of each node.

The algorithm steps of deletion operation in an AVL tree are:

1. Locate the node to be deleted

2. If the node does not have any child, then remove the node

3. If the node has one child node, replace the content of the deletion node with

the child node and remove the node

4. If the node has two children nodes, find the inorder successor node „k' which

has no child node and replace the contents of the deletion node with the „k‟

followed by removing the node.

5. Update the balance factor of the AVL tree

Example:

Let us consider the below AVL tree with the given balance factor as shown in the

figure below

Here, we have to delete the node '25' from the tree. As the node to be deleted does

not have any child node, we will simply remove the node from the tree

After removal of the tree, the balance factor of the tree is changed and therefore, the

rotation is performed to restore the balance factor of the tree and create the perfectly

balanced tree

Example:

class treeNode(object):

 def __init__(self, value):

 self.value = value

 self.l = None

 self.r = None

 self.h = 1

class AVLTree(object):

 def insert(self, root, key):

 if not root:

 return treeNode(key)

 elif key < root.value:

 root.l = self.insert(root.l, key)

 else:

 root.r = self.insert(root.r, key)

 root.h = 1 + max(self.getHeight(root.l),self.getHeight(root.r))

 b = self.getBal(root)

 if b > 1 and key < root.l.value:

 return self.rRotate(root)

 if b < -1 and key > root.r.value:

 return self.lRotate(root)

 if b > 1 and key > root.l.value:

 root.l = self.lRotate(root.l)

 return self.rRotate(root)

 if b < -1 and key < root.r.value:

 root.r = self.rRotate(root.r)

 return self.lRotate(root)

 return root

 def lRotate(self, z):

 y = z.r

 T2 = y.l

 y.l = z

 z.r = T2

 z.h = 1 + max(self.getHeight(z.l),self.getHeight(z.r))

 y.h = 1 + max(self.getHeight(y.l),self.getHeight(y.r))

 return y

 def rRotate(self, z):

 y = z.l

 T3 = y.r

 y.r = z

 z.l = T3

 z.h = 1 + max(self.getHeight(z.l),self.getHeight(z.r))

 y.h = 1 + max(self.getHeight(y.l),self.getHeight(y.r))

 return y

 def getHeight(self, root):

 if not root:

 return 0

 return root.h

 def getBal(self, root):

 if not root:

 return 0

 return self.getHeight(root.l) - self.getHeight(root.r)

 def preOrder(self, root):

 if not root:

 return

 print("{0} ".format(root.value), end="")

 self.preOrder(root.l)

 self.preOrder(root.r)

Tree = AVLTree()

root = None

root = Tree.insert(root, 1)

root = Tree.insert(root, 2)

root = Tree.insert(root, 3)

root = Tree.insert(root, 4)

root = Tree.insert(root, 5)

root = Tree.insert(root, 6)

Preorder Traversal

print("Preorder traversal of the", "constructed AVL tree is")

Tree.preOrder(root)

print()

Output

4 2 1 3 5 6

olf

